Distribution of 137Cs and 40K in the Bottom Sediments of the Balaklava Bay (the Black Sea)

D. A. Kremenchutskii, K. I. Gurov

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russia

gurovki@gmail.com

Abstract

Purpose. The aim of the work is to study spatial variability of the 137Cs and 40K concentrations in the bottom sediments of the Balaklava Bay, and to estimate the sedimentation rate and relative content of the biogenic fraction.

Methods and Results. The results of the 137Cs and 40K concentration measurements in 5 columns of the bottom sediments sampled in various parts of the Balaklava Bay are represented. Activity of 137Cs and 40K in the samples was determined by the gamma spectrometric analysis. Based on the measurement data, spatial variability of the 137Cs and 40K concentration fields in the bottom sediments was studied, and the sedimentation rate was quantitatively estimated. Application of the balance equation provided quantitative estimates of the relative biogenic fraction content; its spatial variability was described. Quantitative estimates of the relationship between the biogenic fraction estimates resulted from use of the direct and indirect methods are represented.

Conclusions. According to the obtained results, the 137Cs and 40K concentrations in the upper 5 cm layer of bottom sediments varied in space from 11 to 62 and from 155 to 562 Bq/kg, respectively. The maximum radionuclide concentrations were characteristic of the northern part of the bay, the minimum ones – of its southern part. The sedimentation average rate was 0.51 ± 0.06 cm/year. Relative biogenic fraction content in the sediments varied in space from 30 to 89% and averaged 46 ± 25%. The maximum values were observed in the southern part of the bay, the minimum ones – in the northern part.

Keywords

Black Sea, Balaklava Bay, bottom sediments, cesium-137 (137Cs), potassium-40 (^40^K), sedimentation rate, biogenic fraction

Acknowledgements

The investigation was carried out within the framework of the state task on theme No. 0555-2021-0005 “Complex interdisciplinary investigations of the oceanologic processes conditioning functioning and evolution of the Black and Azov seas’ ecosystems of the coastal zones” with support of the RFBR project No. 18-45-920007 “Geochemistry of bottom sediments pollutants of the Balaklava Bay (the Black Sea)”.

Original russian text

Original Russian Text © D. A. Kremenchutskii, K. I. Gurov, 2021, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 37, Iss. 2, pp. 207-221 (2021)

For citation

Kremenchutskii, D.A. and Gurov, K.I. 2021. Distribution of 137Cs and 40K in the Bottom Sediments of the Balaklava Bay (the Black Sea). Physical Oceanography, [e-journal] 28(2), pp. 191-204. doi:10.22449/1573-160X-2021-2-191-204

DOI

10.22449/1573-160X-2021-2-191-204

References

  1. Orekhova, N.A., Ovsyany, E.I., Gurov, K.I. and Popov, M.A., 2018. Organic Matter and Grain-Size Distribution of the Modern Bottom Sediments in the Balaklava Bay (the Black Sea). Physical Oceanography, 25(6), pp. 479-488. doi:10.22449/1573-160X-2018-6-479-488
  2. Orekhova, N.A., Ovsyany, E.I. and Tikhonova, E.A., 2019. Organic Carbon and Redox Conditions in Bottom Sediments of the Balaklava Bay. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry, 5(3), pp. 49-64 (in Russian).
  3. Ovsyany, E.I., Kotelyanets, E.A. and Orekhova, N.A., 2009. Arsenic and Heavy Metals in the Bottom Sediments of the Balaklava Bay (Black Sea). Physical Oceanography, 19(4), 254. https://doi.org/10.1007/s11110-009-9048-4
  4. Kotelyanets, E.A., Gurov, K.I., Tikhonova, E.A. and Kondratev, S.I., 2019. Pollutants in Bottom Sediments in the Balaklava Bay (the Black Sea). Physical Oceanography, 26(5), pp. 414-424. doi:10.22449/1573-160X-2019-5-414-424
  5. Lomakin, P.D., Popov, M.A., Chepyzhenko, A.I. and Chepyzhenko, A.A., 2012. Estimation of Turbidity Field and Water Contamination on the Base of Hydrooptical Methods of Observation the Balaklava Bay. Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources. Sevastopol: MHI. Iss. 26, vol. 1, pp. 249-256 (in Russian).
  6. Mirzoeva, N.Yu., Gulin, S.B. and Miroshnichenko, O.N., 2018. Strontium and Cesium Radionuclides. In: A. P. Lisitsin, Ed., 2018. The Black Sea System. Moscow: Scientific World, pp. 605-624. doi:10.29006/978-5-91522-473-4.2018 (in Russian).
  7. Fuhrmann, M., Pietrzak, R., Neiheisel, J. and Dyer, R., 1992. Partitioning of Cs-137 between Sediment and Water from the Black Sea. Chemistry and Ecology, 7(1–4), pp. 3-17. http://dx.doi.org/10.1080/02757549208055429
  8. Buesseler, K.O. and Livingston, H.D., 1997. Time-Series Profiles of 134Cs, 137Cs and 90Sr in the Black Sea. In: E. Özsoy and A. Mikaelyan, Eds., 1997. Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Dordrecht: Springer, pp. 239-251. https://doi.org/10.1007/978-94- 011-5758-2_19
  9. Polikarpov, G.G., Egorov, V.N., Gulin, S.B., Stokozov, N.A., Lazorenko, G.E., Mirzoeva, N.Yu., Tereshchenko, N.N., Tsytsugina, V.G., Kulebakina, L.G., Popovichev, V.N., Korotkov, A.A., Evtushenko, D.B., Zherko, N.V. and Malakhova, L.V., 2008. Radioecological Response of the Black Sea to the Chernobyl Accident. Sevastopol: ECOSI- Gidrofizika, 667 p. (in Russian).
  10. Delfanti, R., Özsoy, E., Kaberi, H., Schirone, A., Salvi, S., Conte, F., Tsabaris, C. and Papucci, C., 2014. Evolution and fluxes of 137Cs in the Black Sea/Turkish Straits System/North Aegean Sea. Journal of Marine Systems, 135, pp. 117-123. https://doi.org/10.1016/j.jmarsys.2013.01.006
  11. Chiroşca, G., Mihailov, M.E., Ţugulan, C.L. and Chiroşca, A.V., 2018. Radionuclides Assessment for the Romanian Black Sea Shelf. In: C. Finkl and C. Makowski, Eds., 2018. Diversity in Coastal Marine Sciences. Cham: Springer, pp. 221-232. https://doi.org/10.1007/978-3-319-57577-3_13
  12. Mirzoeva, N.Y., Gulin, S.B., Sidorov, I.G. and Gulina, L.V., 2018. Estimation of Sedimentation and Sedimentation Rate in the Coastal and Deep-Water Areas of the Black Sea Using Natural and Anthropogenic (Chernobyl) Radionuclides. In: A. P. Lisitsin, Ed., 2018. The Black Sea System. Moscow: Scientific World, pp. 659-670. doi:10.29006/978-5-91522- 473-4.2018 (in Russian).
  13. Dovhyi, I.I., Kremenchutskii, D.A., Bezhin, N.A., Kozlovskaia, O.N., Milyutin, V.V. and Kozlitin, E.A., 2020. Distribution of 137Cs in the Surface Layer of the Black Sea in summer, 2017. Physical Oceanography, 27(2), pp. 152-160. doi:10.22449/1573-160X-2020-2-152-160
  14. Drexler, J.Z., Fuller, C.C. and Archfield, S., 2018. The Approaching Obsolescence of 137Cs Dating of Wetland Soils in North America. Quaternary Science Reviews, 199, pp. 83-96. https://doi.org/10.1016/j.quascirev.2018.08.028
  15. Evrard, O., Chaboche, P.-A., Ramon, R., Foucher, A. and Laceby, J.P., 2020. A Global Review of Sediment Source Fingerprinting Research Incorporating Fallout Radiocesium (137Cs). Geomorphology, 362, 107103. https://doi.org/10.1016/j.geomorph.2020.107103
  16. Gulin, S.B., Sidorov, I.G. and Gulina, L.V., 2013. Biogenic Sedimentation in the Black Sea: Radiotracer-Derived Study. Marine Ecological Journal, 12(2), pp. 19-25 (in Russian).
  17. Gulin, S.B., Gulina, L.V., Sidorov, I.G., Proskurnin, V.Yu., Duka, M.S., Moseichenko, I.N. and Rodina, E.A., 2014. 40K in the Black Sea: A Proxy to Estimate Biogenic Sedimentation. Journal of Environmental Radioactivity, 134, pp. 21-26. https://doi.org/10.1016/j.jenvrad.2014.02.011
  18. Turekian, K.K. and Wedepohl, K.H., 1961. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72(2), pp. 175-192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
  19. Taylor, S.R., 1964. Abundance of Chemical Elements in the Continental Crust: A New Table. Geochimica et Cosmochimica Acta, 28(8), pp. 1273-1285. https://doi.org/10.1016/0016- 7037(64)90129-2
  20. Burnett, W.C., 1975. Trace Element Geochemistry of Biogenic Sediments from the Western Equatorial Pacific. Pacific Science, 29(2), pp. 219-225. Available at: http://hdl.handle.net/10125/954 [Accessed: 20 February 2021].
  21. Kazansky, Yu.P., Ed., 1988. [Geochemistry of Lithogenesis under Conditions of Hydrogen Sulfide Contamination (Black Sea)]. Novosibirsk: Nauka, 194 p. (in Russian).
  22. Rudnick, R.L. and Gao, S., 2003. Composition of the Continental Crust. In: H. D. Holland and K. K. Turekian, 2003. Treatise on Geochemistry. Vol. 3: The Crust. Pergamon, pp. 1-64. https://doi.org/10.1016/B0-08 043751-6/03016-4
  23. Robert, C.M., ed., 2008. Global Sedimentology of the Ocean: An Interplay between Geodynamics and Paleoenvironment. Amsterdam: Elsevier Science, 487 p. https://doi.org/10.1016/S1572-5480(08)00219-4.
  24. Yücel, M., Moore, W.S., Butler, I.B., Boyce, A. and Luther III, G.W., 2012. Recent Sedimentation in the Black Sea: New Insights from Radionuclide Distributions and Sulfur Isotopes. Deep-Sea Research Part I: Oceanographic Research Papers, 66, pp. 103-113. doi:10.1016/j.dsr.2012.04.007
  25. Currie, L.A., 1968. Limits for Qualitative Detection and Quantitative Determination. Application to Radiochemistry. Analytical Chemistry, 40(3), pp. 586-593. https://doi.org/10.1021/ac60259a007
  26. Markelov, M.V., Golosov, V.N. and Belyaev, V.R., 2012. Changes in the Sedimentation Rates on the Floodplains of Small Rivers in the Central Russian Plain. Vestnik Moskovskogo Universiteta. Seria 5, Geografia, (5), pp. 70-76 (in Russian).
  27. Smith, H.G. and Blake, W.H., 2014. Sediment Fingerprinting in Agricultural Catchments: A Critical Re-examination of Source Discrimination and Data Corrections. Geomorphology, 204, pp. 177-191. https://doi.org/10.1016/j.geomorph.2013.08.003
  28. Laceby, J.P., Evrard, O., Smith, H.G., Blake, W.H., Olley, J.M., Minella, J.P.G. and Owens, P.N., 2017. The Challenges and Opportunities of Addressing Particle Size Effects in Sediment Source Fingerprinting: A Review. Earth-Science Reviews, 169, pp. 85-103. https://doi.org/10.1016/j.earscirev.2017.04.009
  29. Fomin, V.V. and Repetin, L.N., 2005. Numerical Simulation of Wind Currents and Propagation of Impurities in the Balaklava Bay. Physical Oceanography, 15(4), pp. 232-246. https://doi.org/10.1007/s11110-005-0045-y
  30. Sawhney, B.L., 1972. Selective Sorption and Fixation of Cations by Clay Minerals: A Review. Clays and Clay Minerals, 20(2), pp. 93-100. https://doi.org/10.1346/CCMN.1972.0200208
  31. Comans, R.N.J., Haller, M. and Preter, P.D., 1991. Sorption of Cesium on Illite: Nonequilibrium Behavior and Reversibility. Geochimica et Cosmochimica Acta, 55(2), pp. 433-440. https://doi.org/10.1016/0016-7037(91)90002-M

Download the article (PDF)