Bio-Optical Characteristics of the Black Sea Coastal Waters near Sevastopol: Assessment of the MODIS and VIIRS Products Accuracy

E. Yu. Skorokhod1, ✉, T. Ya. Churilova1, T. V. Efimova1, N. A. Moiseeva1, V. V. Suslin2

1 A. O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Science, Sevastopol, Russian Federation

2 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: elenaskorokhod@ibss-ras

Abstract

Purpose. The purpose of the work is to evaluate accuracy of the satellite products for the coastal waters near Sevastopol, generated by the standard algorithms based on the MODIS and VIIRS (installed at the artificial Earth satellites Aqua and Terra, and at Suomi NPP, respectively) data.

Methods and Results. In situ sampling was carried out at the station (44°37'26" N and 33°26'05" E) located at a distance of two miles from the Sevastopol Bay. The chlorophyll a concentration was measured by the spectrophotometric method. The spectral light absorption coefficients by optically active components were measured in accordance with the current NASA protocol. The spectroradiometers MODIS and VIIRS Level-2 data with spatial resolution 1 km in nadir around the in situ station (44°37'26"±0°00'32" N and 33°26'05"±0°00'54" E) were used. The satellite products were processed by the SeaDAS 7.5.3 software developed in NASA. The research showed that the standard NASA algorithms being applied to the MODIS and VIIRS data, yielded incorrect values of the optically active components’ content in the Black Sea coastal waters near Sevastopol as compared to the data of in situ measurements in the same region: the satellite-derived “chlorophyll a concentration” was on average 1.6 times lower in spring, and 1.4 times higher in summer; the contribution of phytoplankton to total light absorption at 443 nm was underestimated in 8.7 times; the light absorption by colored detrital matter was overestimated in 2.2 times.

Conclusions. The NASA standard algorithms are inapplicable to calculating bio-optical indices in the coastal waters of the Black Sea near Sevastopol since they provide incorrect values of the satellite products (Ca-s, aph-s(443) and aCDM-s(443)). Operative ecological monitoring based on satellite data requires development of a regional algorithm taking into account the seawater optical features in the region and in the coastal zone, in particular.

Keywords

chlorophyll a, phytoplankton, colored dissolved organic matter, non-algal particles, remote sensing, MODIS, VIIRS, Black Sea

Acknowledgements

The investigation was carried out within the framework of the state task on theme No. АААА‑А19‑119061190081‑9 and at the RFBR financial support of project No. 18‑45‑920070. The authors are very thankful to the junior researcher Sakhon E. G. and the leading engineer Zemlianskaia E. A. (IBSS, Sevastopol) for their assistance in sampling during regular bio-optical monitoring in the Sevastopol Bay. The authors are grateful to Goddard Space Flight Center and Ocean Biology Processing Group (NASA) for the data provided and their preliminary processing.

Original russian text

Original Russian Text © The Authors, 2021, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 37, Iss. 2, pp. 233-246 (2021)

For citation

Skorokhod, E.Yu., Churilova, T.Ya., Efimova, T.V., Moiseeva, N.A. and Suslin, V.V., 2021. Bio-Optical Characteristics of the Black Sea Coastal Waters near Sevastopol: Assessment of MODIS and VIIRS Products Accuracy. Physical Oceanography, 28(2), pp. 215-227. doi:10.22449/1573-160X-2021-2-215-227

DOI

10.22449/1573-160X-2021-2-215-227

References

  1. Oguz, T., Ed., 2008. State of the Environment of the Black Sea (2001 – 2006/7). Publications of the Commission on the Protection of the Black Sea against Pollution (BSC) 2008-3. Istanbul, Turkey, 2008. 448 p.
  2. Kopelevich, O.V., Sheberstov, S.V., Yunev, O., Basturk, O., Finenko, Z.Z., Nikonov, S. and Vedernikov, V.I., 2002. Surface Chlorophyll in the Black Sea over 1978–1986 Derived from Satellite and In Situ Data. Journal of Marine Systems, 36(3–4), pp. 145-160. doi:10.1016/s0924-7963(02)00184-7
  3. Jerlov, N.G., 1976. Marine Optics. Amsterdam: Elsevier, 230 p.
  4. Kirk, J.T.O., 2010. Light and Photosynthesis in Aquatic Ecosystems. 3d ed. Cambridge: Cambridge University Press, 662 p. https://doi.org/10.1017/CBO9781139168212
  5. Gordon, H.R. and Wang, M., 1994. Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: A Preliminary Algorithm. Applied Optics, 33(3), pp. 443-452. doi:10.1364/ao.33.000443
  6. Skorokhod, E.Yu., Efimova, T.V., Moiseeva, N.A., Zemlianskaia, E.A., Churilova, T.Ya. and Suslin, V.V., 2019. [Comparison of Standard Products from MODIS Aqua/Terra and VIIRS Spectroradiometers with the Results of Bio-Optical Measurements in the Coastal Waters of Sevastopol]. In: IBSS, 2019. Pontus Euxinus – 2019: Proceedings of XI All-Russian Scientific and Applied Conference for Young Scientists on the Water Systems Problems, Dedicated to the Remembrance of Prof. S. B. Gulin, Sevastopol, 23–27 September, 2019. Sevastopol: IBSS, pp. 134-135 (in Russian).
  7. Jeffrey, S.W. and Humphrey, G.F., 1975. New Spectrophotometric Equations for Determining Chlorophylls a, b, c1 and c2 in Higher Plants, Algae and Natural Phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), pp. 191-194.
  8. Roesler, C.S., 2018. In Situ Bio-Optical Observations on NERACOOS Buoy A01 (2005–2017): multichannel calibrated chlorophyll fluorescence, turbidity, and multispectral incident irradiance and upwelling radiance. Boston : Massachusetts Water Resources Authority. Report 2018-02, 19 p.
  9. IOCCG, 2018. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation. Volume 1.0: Inherent Optical Property Measurements and Protocols: Absorption Coefficient. Dartmouth, NS, Canada: IOCCG, 78 p. http://dx.doi.org/10.25607/OBP-119
  10. Kishino, M., Takahashi, M., Okami, N. and Ichimura, S., 1985. Estimation of the Spectral Absorption Coefficients of Phytoplankton in the Sea. Bulletin of Marine Science, 37(2), pp. 634642.
  11. Tassan, S. and Ferrari, G.M., 1995. An Alternative Approach to Absorption Measurements of Aquatic Particles Retained on Filters. Limnology and Oceanography, 40(8), pp. 1358-1368. https://doi.org/10.4319/lo.1995.40.8.1358
  12. O’Reilly, J.E., Maritonera, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M. and McClain, C., 1998. Ocean Color Chlorophyll Algorithms for SeaWiFS. Journal of Geophysical Research: Oceans, 103(C11), pp. 24937-24953. https://doi.org/10.1029/98JC02160
  13. Hu, C., Lee, Z. and Franz, B., 2012. Chlorophyll a Algorithms for Oligotrophic Oceans: A Novel Approach Based on Three-Band Reflectance Difference. Journal of Geophysical Research: Oceans, 117(C1), C01011. doi:10.1029/2011JC007395
  14. Werdell, P.J., Franz, B.A., Lefler, J.T., Robinson, W.D. and Boss, E., 2013. Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-Dependent Backscattering by Seawater. Optics Express, 21(26), pp. 32611-32622. doi:10.1364/OE.21.032611
  15. Werdell, P.J., Franz, B.A., Bailey, S.W., Feldman, G.C., Boss, E., Brando, V.E., Dowell, M., Hirata, T., Lavender, S.J. [et al.], 2013. Generalized Ocean Color Inversion Model for Retrieving Marine Inherent Optical Properties. Applied Optics, 52(10), pp. 2019-2037. http://doi.org/10.1364/ao.52.002019
  16. Bricaud, A., Babin, M., Morel, A. and Claustre, H., 1995. Variability in the Chlorophyll-Specific Absorption Coefficients of Natural Phytoplankton: Analysis and Parameterization. Journal of Geophysical Research: Oceans, 100(C7), pp. 13321-13332. https://doi.org/10.1029/95JC00463
  17. Bricaud, A., Morel, A., Babin, M., Allali, K. and Claustre, H., 1998. Variations of Light Absorption by Suspended Particles with Chlorophyll a Concentration in Oceanic (case 1) Waters: Analysis and Implications for Bio-Optical Models. Journal of Geophysical Research: Oceans, 103(C13), pp. 31033-31044. https://doi.org/10.1029/98JC02712
  18. Cleveland, J.S., 1995. Regional Models for Phytoplankton Absorption as a Function of Chlorophyll a Concentration. Journal of Geophysical Research: Oceans, 100(C7), pp. 1333313344. https://doi.org/10.1029/95JC00532
  19. Naik, P., D’Sa, E.J., Gomes, H.R., Goés, J.I. and Mouw, C.B., 2013. Light Absorption Properties of Southeastern Bering Sea Waters: Analysis, Parameterization and Implications for Remote Sensing. _Remote Sensing of Environmen_t, 134, pp. 120-134. doi:10.1016/j.rse.2013.03.004
  20. Churilova, T., Suslin, V., Krivenko, O., Efimova, T., Moiseeva, N., Mukhanov, V. and Smirnova, L., 2017. Light Absorption by Phytoplankton in the Upper Mixed Layer of the Black Sea: Seasonality and Parameterization. Frontiers in Marine Science, 4, 90. https://doi.org/10.3389/fmars.2017.00090
  21. Efimova, T., Churilova, T., Moiseeva, N., Zemlianskaia, E., Krivenko, O. and Sakhon, E., 2018. Dynamics in Pigment Concentration and Light Absorption by Phytoplankton, Non-Algal Particles and Colored Dissolved Organic Matter in the Black Sea Coastal Waters (near Sevastopol). Proceedings of SPIE, 10833: 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 108336C. doi:10.1117/12.2504657
  22. Suslin, V. and Churilova, T., 2016. A Regional Algorithm for Separating Light Absorption by Chlorophyll-a and Coloured Detrital Matter in the Black Sea, Using 480–560 nm Bands from Ocean Colour Scanners. International Journal of Remote Sensing, 37(18), pp. 4380-4400. doi:10.1080/01431161.2016.1211350
  23. Robinson, C.M., Cherukuru, N., Hardman-Mountford, N.J., Everett, J.D., McLaughlin, M.J., Davies, K.P., Van Dongen-Vogels, V., Ralph, P.J. and Dobin, M.A., 2017. Phytoplankton Absorption Predicts Patterns in Primary Productivity in Australian Coastal Shelf Waters. Estuarine, Coastal and Shelf Science, 192, pp. 1-16. https://doi.org/10.1016/j.ecss.2017.04.012
  24. Churilova, T., Moiseeva, N., Efimova, N., Suslin, V., Krivenko, O. and Zemlianskaia, E., 2017. Annual Variability in Light Absorption by Particles and Colored Dissolved Organic Matter in the Crimean Coastal Waters (the Black Sea). Proceedings of SPIE, 10466: 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 104664B. doi:10.1117/12.2288339
  25. Darecki, M., Weeks, A., Sagan, S., Kowalczuk, P. and Kaczmarek, S., 2003. Optical Characteristics of Two Contrasting Case 2 Waters and Their Influence on Remote Sensing Algorithms. Continental Shelf Research, 23(3–4), pp. 237-250. https://doi.org/10.1016/s02784343(02)00222-4
  26. Bricaud, A., Babin, M., Claustre, H., Ras, J. and Tièche, F., 2010. Light Absorption Properties and Absorption Budget of Southeast Pacific Waters. Journal of Geophysical Research: Oceans, 115(C8), C08009. doi:10.1029/2009JC005517
  27. Campbell, J., Antoine, D., Armstrong, R., Arrigo, K., Balch, W., Barber, R., Behrenfeld, M., Bidigare, R., Bishop, J. [et al.], 2002. Comparison of Algorithms for Estimating Ocean Primary Production from Surface Chlorophyll, Temperature, and Irradiance. Global Biogeochemical Cycles, 16(3), pp. 9-1-9-15. doi:10.1029/2001GB001444
  28. Krivenko, O.V., Parkhomenko, A.V., Churilova, T.Ya., Finenko, Z.Z. and Suslin, V.V., 2012. Reanalysis of Long Term Changes in the Phytoplankton Biomass in the Open Part of the Black Sea Based on In Situ Measurements and Satellite Observations. In: MHI, 2012. Ekologicheskaya Bezopasnost' Pribrezhnykh i Shel'fovykh Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 26(2), pp. 185-194 (in Russian).
  29. Harvey, E.T., Walve, J., Andersson, A., Karlson, B. and Kratzer, S., 2019. The Effect of Optical Properties on Secchi Depth and Implications for Eutrophication Management. Frontiers in Marine Science, 5, 496. doi:10.3389/fmars.2018.00496
  30. Markager, S. and Vincent, W.F., 2001. Light Absorption by Phytoplankton: Development of a Matching Parameter for Algal Photosynthesis under Different Spectral Regimes. Journal of Plankton Research, 23(12), pp. 1373-1384. https://doi.org/10.1093/plankt/23.12.1373
  31. Bracher, A.U. and Tilzer, M.M., 2001. Underwater Light Field and Phytoplankton Absorbance in Different Surface Water Masses of the Atlantic Sector of the Southern Ocean. Polar Biology, 24(9), pp. 687-696. https://doi.org/10.1007/s003000100269
  32. Churilova, T.Ya., Suslin, V.V., Moiseeva, N.A. and Efimova, T.V., 2020. Phytoplankton Bloom and Photosynthetically Active Radiation in Coastal Waters. Journal of Applied Spectroscopy, 86(6), pp. 1084-1091. https://doi.org/10.1007/s10812-020-00944-0
  33. Morel, A. and Prieur, L., 1977. Analysis of Variations in Ocean Color. Limnology and Oceanography, 22(4), pp. 709-222. https://doi.org/10.4319/lo.1977.22.4.0709
  34. Churilova, T., Suslin, V., Sosik, H.M., Efimova, T., Moiseeva, N., Moncheva, S., Mukhanov, V., Rylkova, O. and Krivenko, O., 2018. Phytoplankton Light Absorption in the Deep Chlorophyll Maximum Layer of the Black Sea. European Journal of Remote Sensing, 52(sup. 1), pp. 123-136. doi:10.1080/22797254.2018.1533389

Download the article (PDF)