Model and Experimental Estimates of Vertical Mixing Intensity in the Sea Upper Homogeneous Layer

A. M. Chukharev, M. I. Pavlov

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: alexchukh@mail.ru

Abstract

Purpose. The study is aimed at qualitative and quantitative analysis (based on the updated previously proposed multiscale model) of the experimental data on turbulence intensity and their comparison with theoretical and semi-empirical relationships for the purpose of describing the contributions of various turbulence sources.

Methods and Results. A comparative analysis of experimental data and model calculations of turbulence characteristics near the sea surface was performed. The methods of theoretical assessing generation of turbulence in the near-surface sea layer by various physical processes are considered. The results of calculations by the well-known models of turbulent exchange were compared with the experimental data collected by the scientists of the Turbulence Department of MHI, RAS, using the specialized equipment. The analysis results made it possible to determine the possibility of applying the considered models for calculating turbulence intensity under different hydrometeorological conditions. At light winds, none of the models yielded the results which matched the measurement data. At moderate winds, the simulation results showed quite satisfactory agreement with the experiment data; and for strong winds, the multiscale model results were the best. This model was modified to assess the contributions of two other mechanisms of turbulence generation: the Stokes drift and the Langmuir circulations.

Conclusions. Objective assessment of the turbulent exchange intensity requires taking into account of three main mechanisms of turbulence generation, namely flow velocity shear, wave motions and wave breaking. Depending on the hydrometeorological situation, each of these mechanisms can dominate in a certain depth range. The calculations performed using the updated model showed that the Stokes drift added 2–17 % to the total dissipation in the upper 30-meter layer, whereas the contribution of the Langmuir circulations calculated through dependence of the vertical velocity of kinetic energy transfer upon the Langmuir number, can reach 15 % for small Langmuir numbers.

Keywords

turbulent exchange, upper sea layer, turbulence generation mechanisms, modeling, dissipation rate, model verification, multiscale model, Stokes drift, Langmuir circulations

Acknowledgements

The study was carried out within the framework of the state task on theme No. 0827-2018-0003.

Original russian text

Original Russian Text © A. M. Chukharev, M. I. Pavlov, 2021, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 37, Iss. 3, pp. 333-349 (2021)

For citation

Chukharev, A.M. and Pavlov, M.I., 2021. Model and Experimental Estimates of Vertical Mixing Intensity in the Sea Upper Homogeneous Layer. Physical Oceanography, 28(3), pp. 309-325. doi:10.22449/1573-160X-2021-3-309-325

DOI

10.22449/1573-160X-2021-3-309-325

References

  1. Monin, A.S. and Ozmidov, R.V., 1985. Turbulence in the Ocean. Dordrecht : D. Reidel Publishing Company, 248 p. doi:10.1007/978-94-009-5217-1
  2. Belcher, S.E., Grant, A.L., Hanley, K.E., Fox-Kemper, B., Van Roekel, L., Sullivan, P.P., Large, W.G., Brown, A., Hines, A. [еt al.], 2012. A Global Perspective on Langmuir Turbulence in the Ocean Surface Boundary Layer. Geophysical Research Letters, 39(18), L18605. https://doi.org/10.1029/2012GL052932
  3. Fedorov, K.N. and Ginzburg, A.I., 1992. The Near-Surface Layer of the Ocean. London: Taylor&Francis, 256 p. https://doi.org/10.1201/b12067
  4. Dobroklonsky, S.V., 1947. [Turbulent Viscosity in the Surface Layer of the Sea and Excitement]. Doklady AN SSSR, 58(7), pp. 1345-1348 (in Russian).
  5. Benilov, A.Yu., 1973. On the Generation of Turbulence in the Ocean by the Surface Waves. Izvestiya Akademii Nauk SSSR Fizika Atmosfery i Okeana, 9(3), pp. 293-303 (in Russian).
  6. Benilov, A.Yu. and Ly, L.N., 2002. Modelling of Surface Waves Breaking Effects in the Ocean Upper Layer. Mathematical and Computer Modelling, 35(1–2), pp. 191-213. doi:10.1016/S0895-7177(01)00159-5
  7. Csanady, G.T., 1984. The Free Surface Turbulent Shear Layer. Journal of Physical Oceanography, 14(2), pp. 402-411. https://doi.org/10.1175/1520-0485(1984)014%3C0402:TFSTSL%3E2.0.CO;2
  8. Craig, P.D. and Banner, M.L., 1994. Modelling of Wave-Enhanced Turbulence in the Ocean Surface Layer. Journal of Physical Oceanography, 24(12), pp. 2546-2559. doi:10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2
  9. Kudryavtsev, V., Shrira, V., Dulov, V., and Malinovsky, V., 2008. On the Vertical Structure of Wind-Driven Sea Currents. Journal of Physical Oceanography, 38(10), pp. 2121-2144. https://doi.org/10.1175/2008JPO3883.1
  10. Chukharev, A.M., 2013. Multitime Scale Model of Turbulence in the Sea Surface Layer. Izvestiya, Atmospheric and Oceanic Physics, 49(4), pp. 439-449. https://doi.org/10.1134/S0001433813040026
  11. Craik, A.D.D. and Leibovich, S., 1976. A Rational Model for Langmuir Circulations. Journal of Fluid Mechanics, 73(3), pp. 401-426. https://doi.org/10.1017/S0022112076001420
  12. Plueddemann, A.J., Smith, J.A., Farmer, D.M., Weller, R.A., Crawford, W.R., Pinkel, R., Vagle, S., and Gnanadesikan, A., 1996. Structure and Variability of Langmuir Circulation during the Surface Waves Processes Program. Journal of Geophysical Research: Ocean, 101(C2), pp. 3525-3543. https://doi.org/10.1029/95JC03282
  13. Tsai, W.-t., and Hung, L.-p., 2007. Three-Dimensional Modeling of Small-Scale Processes in the Upper Boundary Layer Bounded by a Dynamic Ocean Surface. Journal of Geophysical Research: Ocean, 112(C2), C02019. doi:10.1029/2006JC003686
  14. Kukulka, T., Plueddemann, A.J. and Sullivan, P.P., 2012. Nonlocal Transport due to Langmuir Circulation in a Coastal Ocean. Journal of Geophysical Research: Ocean, 117(C12), C12007. doi:10.1029/2012JC008340
  15. Li, K., Zhang, Z., Chini, G. and Flierl, G., 2012. Langmuir Circulation: An Agent for Vertical Restratification? Journal of Physical Oceanography, 42(11), pp. 1945-1958. doi:10.1175/JPO-D-11-0225.1
  16. Li, S., Li, M., Gerbi, G.P. and Song, J.-B., 2013. Roles of Breaking Waves and Langmuir Circulation in the Surface Boundary Layer of a Coastal Ocean. Journal of Geophysical Research: Oceans, 118(10), pp. 5173-5187. doi:10.1002/jgrc.20387
  17. McWilliams, J.C., Huckle, E., Liang, J.-H. and Sullivan, P.P., 2012. The Wavy Ekman Layer: Langmuir Circulations, Breaking Waves, and Reynolds Stress. Journal of Physical Oceanography, 42(11), pp. 1793-1816. https://doi.org/10.1175/JPO-D-12-07.1
  18. McWilliams, J.C., Huckle, E., Liang, J. and Sullivan, P.P., 2014. Langmuir Turbulence in Swell. Journal of Physical Oceanography, 44(3), pp. 870-890. https://doi.org/10.1175/JPO-D-13-0122.1
  19. Sullivan, P.P., Romero, L., McWilliams, J.C. and Melville, W.K., 2012. Transient Evolution of Langmuir Turbulence in Ocean Boundary Layers Driven by Hurricane Winds and Waves. Journal of Physical Oceanography, 42(11), pp. 1959-1980. https://doi.org/10.1175/JPO-D-12-025.1
  20. Scully, M.E., Fisher, A.W., Suttles, S.E., Sanford, L.P. and Boicourt, W.C., 2015. Characterization and Modulation of Langmuir Circulation in Chesapeake Bay. Journal of Physical Oceanography, 45(10), pp. 2621-2639. https://doi.org/10.1175/JPO-D-14-0239.1
  21. Katsaros, K.B. and Ataktürk, S.S., 1992. Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development. In: M. L. Banner and R. H. J. Grimshaw, eds., Breaking Waves. Berlin: Springer, pp. 119-132. https://doi.org/10.1007/978-3-642-84847-6_9
  22. Melville, W.K., Veron, F. and White, C.J., 2002. The Velocity Field under Breaking Waves: Coherent Structures and Turbulence. Journal of Fluid Mechanics, 454, pp. 203-233. doi:10.1017/S0022112001007078
  23. Phillips, O.M., 1985. Spectral and Statistical Properties of the Equilibrium Range in Wind-Generated Gravity Waves. Journal of Fluid Mechanics, 156, pp. 505-531. doi:10.1017/S0022112085002221
  24. Romero, L., Melville, W.K. and Kleiss, J.M., 2012. Spectral Energy Dissipation due to Surface Wave Breaking. Journal of Physical Oceanography, 42(9), pp. 1421-1444. https://doi.org/10.1175/JPO-D-11-072.1
  25. Romero, L., 2019. Distribution of Surface Wave Breaking Fronts. Geophysical Research Letters, 46(17–18), pp. 10463-10474. https://doi.org/10.1029/2019GL083408
  26. Chukharev, A.M., Zubov, A.G. and Pavlenko, O.I., 2018. Experimental Estimation of the Turbulent Energy Dissipation Rate in the Sea Subsurface Layer at Storm Conditions. Physical Oceanography, 25(4), pp. 305-316. doi:10.22449/1573-160X-2018-4-305-316
  27. Korinenko, A.E., Malinovsky, V.V. and Kudryavtsev, V.N., 2018. Experimental Research of Statistical Characteristics of Wind Wave Breaking. Physical Oceanography, 25(6), pp. 489-500. doi:10.22449/1573-160X-2018-6-489-500
  28. Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C. and Ma, J., 2004. Wave-Induced Mixing in the Upper Ocean: Distribution and Application to a Global Ocean Circulation Model. Geophysical Research Letters, 31(11), L11303. doi:10.1029/2004GL019824
  29. Babanin, A.V., 2006. On a Wave-Induced Turbulence and a Wave-Mixed Upper Ocean Layer. Geophysical Research Letters, 33(20), L20605. doi:10.1029/2006GL027308
  30. Babanin, A.V., Onorato, M. and Qiao, F., 2012. Surface Waves and Wave-Coupled Effects in Lower Atmosphere and Upper Ocean. Journal of Geophysical Research: Oceans, 117(C11), C00J01. doi:10.1029/2012JC007932
  31. Pleskachevsky, A., Dobrynin, M., Babanin, A.V., Günther, H. and Stanev, E., 2011. Turbulent Mixing due to Surface Waves Indicated by Remote Sensing of Suspended Particulate Matter and Its Implementation into Coupled Modeling of Waves, Turbulence, and Circulation. Journal of Physical Oceanography, 41(4), pp. 708-724. https://doi.org/10.1175/2010JPO4328.1
  32. Kuznetsov, S.Yu., Saprykina, Ya.V., Dulov, V.A. and Chukharev, A.M., 2015. Turbulence Induced by Storm Waves in Deep Water. Physical Oceanography, (5), pp. 22-31. doi:10.22449/1573-160X-2015-5-22-31
  33. Wu, L., Rutgersson, A. and Sahlée, E., 2015. Upper-Ocean Mixing due to Surface Gravity Waves. Journal of Geophysical Research: Oceans, 120(12), pp. 8210-8228. doi:10.1002/2015JC011329
  34. Kitaigorodskii, S.A. and Lumley, J.L., 1983. Wave-Turbulence Interactions in the Upper Ocean. Part I: The Energy Balance of the Interacting Fields of Surface Wind Waves and Wind-Induced Three-Dimensional Turbulence. Journal of Physical Oceanography, 13(11), pp. 1977-1987. https://doi.org/10.1175/1520-0485(1983)013%3C1977:WTIITU%3E2.0.CO;2
  35. Qiao, F., Yuan, Y., Ezer, T., Xia, C., Yang, Y., Lü, X. and Song, Z., 2010. A Three-Dimensional Surface Wave–Ocean Circulation Coupled Model and Its Initial Testing. Ocean Dynamics, 60(5), pp. 1339-1355. https://doi.org/10.1007/s10236-010-0326-y
  36. Large, W.G., McWilliams, J.C. and Doney, S.C., 1994. Oceanic Vertical Mixing: A Review and a Model with a Nonlocal Boundary Layer Parameterization. Reviews of Geophysics, 32(4), pp. 363-403. doi:10.1029/94RG01872
  37. Mellor, G.L. and Yamada, T., 1982. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Reviews of Geophysics, 20(4), pp. 851-875. doi:10.1029/RG020i004p00851
  38. McWilliams, J.C. and Sullivan, P.P., 2000. Vertical Mixing by Langmuir Circulations. Spill Science & Technology Bulletin, 6(3–4), pp. 225-237. http://dx.doi.org/10.1016/S1353-2561(01)00041-X
  39. Li, M., Garrett, C. and Skyllingstad, E., 2005. A Regime Diagram for Classifying Turbulent Large Eddies in the Upper Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 52(2), pp. 259-278. doi:10.1016/j.dsr.2004.09.004
  40. Harcourt, R.R. and D’Asaro, E.A., 2008. Large-Eddy Simulation of Langmuir Turbulence in Pure Wind Seas. Journal of Physical Oceanography, 38(7), pp. 1542-1562. https://doi.org/10.1175/2007JPO3842.1
  41. Van Roekel, L.P., Fox-Kemper, B., Sullivan, P.P., Hamlington, P.E. and Haney, S.R., 2012. The Form and Orientation of Langmuir Cells for Misaligned Winds and Waves. Journal of Geophysical Research: Oceans, 117(C5), C05001. doi:10.1029/2011JC007516
  42. Ardhuin, F. and Jenkins, A.D., 2006. On the Interaction of Surface Waves and Upper Ocean Turbulence. Journal of Physical Oceanography, 36(3), pp. 551-557. https://doi.org/10.1175/JPO2862.1
  43. Kantha, L.H. and Clayson, C.A., 2004. On the Effect of Surface Gravity Waves on Mixing in the Oceanic Mixed Layer. Ocean Modelling, 6(2), pp. 101-124. https://doi.org/10.1016/S1463-5003(02)00062-8
  44. Samodurov, A.S., Dykman, V.Z., Barabash, V.A., Efremov, O.I., Zubov, A.G., Pavlenko, O.I. and Chukharev, A.M., 2005. “Sigma-1” Measuring Complex for the Investigation of Small-Scale Characteristics of Hydrophysical Fields in the Upper Layer of the Sea. Physical Oceanography, 15(5), pp. 311-322. https://doi.org/10.1007/s11110-006-0005-1
  45. Repina, I.A., Chukharev, A.M., Goryachkin, Y.N., Komarova, N.Y. and Pospelov, M.N., 2009. Evolution of Air-Sea Interaction Parameters during the Temperature Front Passage: The Measurements on an Oceanographic Platform. Atmospheric Research, 94(1), pp. 74-80. http://dx.doi.org/10.1016/j.atmosres.2008.11.007
  46. Chukharev, A.M. and Repina, I.A., 2012. Interaction of Atmosphere and Sea Boundary Layers on Small and Meso-Scales in a Coastal Zone. Morskoy Gidrofizicheskiy Zhurnal, (2), pp. 60-78 (in Russian).

Download the article (PDF)