Interannual Variability of Thermal Conditions in the Extratropical Zone of the South Pacific at the Turn of the XX–XXI Centuries

I. D. Rostov, E. V. Dmitrieva, N. I. Rudykh

V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation

e-mail: rostov@poi.dvo.ru

Abstract

Purpose. The aim of the study consists in identifying the spatial-temporal features of interannual changes in the surface air temperature Ta, the sea surface temperature (SST) and the upper 1000-meter water layer temperature Tw in the extratropical zone of the South Pacific Ocean over the past four decades, which are manifested as a result of the planetary changes and a shift in the climatic regime at the turn of the XX–XXI centuries. Besides, the revealed features’ trends and their possible cause-and-effect relationships with the processes in the atmosphere and on the ocean surface are planned to be assessed.

Methods and Results. Based on the Global Meteorological Network and Reanalysis data (NOAA), regional features and trends of the water and air temperature interannual fluctuations, and their relation to variations in the pressure and wind fields, intensity of the atmosphere action centers (AAC) and climatic indices (CI) over the past 4 decades have been determined. Applied were the methods of the cluster, correlation and regression analysis, as well as the apparatus of empirical orthogonal functions (EOF). The positive trends in changes of the Ta and SST fields are manifested mainly in the northwestern part of the region, where they are statistically significant and reach their maximum 0.4–0.6°C over 10 years in the Tasman Sea region and to the northeast of New Zealand. The water areas with minimal, negative or insignificant values of the air and water temperature trends are located on the southern and eastern peripheries of the water area under study – in the areas of influence of cold currents. Over the entire investigated water area, the trends in the mean annual SST and Ta were ~ 0.04–0.06°C/10 years that are 2–3 times less than those in the subarctic region of the North Pacific Ocean. The features of spatial-temporal variability of the water temperature trends at different horizons differ significantly from the characteristics of the SST trends. The trends’ spatial distribution is already transformed within the upper 200-m layer; and deeper, maximums of this value are observed in the southeastern part of the water area.

Conclusions. The results obtained made it possible to characterize the degree of heterogeneity of response of the atmosphere surface layer, SST and vertical distribution of Tw in the extratropical zone of the South Pacific to the ongoing global changes, to identify the isolated areas, to estimate quantitatively the warming rate in these water areas, and to compare these estimates with those of the other regions in the Pacific Ocean. It is shown that the individual phases of alternation of the warm and cold periods in the interannual temperature variation are consistent with the changes of the regional CI and the AAC state; this fact emphasizes the inhomogeneous nature of these processes in space and time.

Keywords

South Pacific, extratropical zone, current climatic changes, regional features, water and air temperature, warming and cooling trends, climatic parameters, correlations

Acknowledgements

The work was carried out within the framework of the state task of POI FEB RAS on theme No. 0211-2021-0008, state registration number is 121021700346-7. The authors are thankful to the program developers for the opportunity to use the climatic data posted on the NOAA sites.

Original russian text

Original Russian Text © I. D. Rostov, E. V. Dmitrieva, N. I. Rudykh, 2021, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 37, Iss. 6, pp. 659-679 (2021)

For citation

Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2021. Interannual Variability of Thermal Conditions in the Extratropical Zone of the South Pacific at the Turn of the XX–XXI Centuries. Physical Oceanography, 28(6), pp. 612-631. doi:10.22449/1573-160X-2021-6-612-631

DOI

10.22449/1573-160X-2021-6-612-631

References

  1. WMO, 2021. State of the Global Climate 2020. Provisional report. WMO-No. 1264. Geneva: WMO, 54 p. Available at: https://library.wmo.int/doc_num.php?explnum_id=10618 [Accessed: 23 April 2021].
  2. Balmaseda, M.A., Trenberth, K.E. and Källén, E., 2013. Distinctive Climate Signals in Reanalysis of Global Ocean Heat Content. Geophysical Research Letters, 40(9, pp. 1754- 1759. doi:10.1002/grl.50382
  3. Blunden, J. and Arndt, D.S., eds., 2020. State of the climate in 2019. Bulletin of the American Meteorological Society, 101(8), pp. S1-S429. doi:10.1175/2020BAMSStateoftheClimate.1
  4. Desbruyères, D.G, Purkey, S., McDonagh, E.L., Johnson, G.C. and King, B.A., 2016. Deep and Abyssal Ocean Warming from 35 Years of Repeat Hydrography. Geophysical Research Letters, 43(19), pp. 10356-10365. doi:10.1002/2016GL070413
  5. Levitus, S, Antonov, J.I., Boyer, T.P. and Stephens, C., 2000. Warming of the World Ocean. Science, 287(5461), pp. 2225-2229. doi:10.1126/science.287.5461.2225
  6. Willis, J., Roemmich, D. and Cornuelle, B., 2004. Interannual Variability in Upper Ocean Heat Content, Temperature, and Thermosteric Expansion on Global Scales. Journal of Geophysical Research: Oceans, 109(C12), C12036. doi:10.1029/2003JC002260
  7. Volkov, D.L., Lee, S.-K., Landerer, F.W. and Lumpkin, R., 2017. Decade-long Deep-ocean Warming Detected in the Subtropical South Pacific. Geophysical Research Letters, 44(2), pp. 927-936. doi:10.1002/2016GL071661
  8. Wang, C., 2019. Three-ocean Interactions and Climate Variability: a Review and Perspective. Climate Dynamics, 53(7–8, pp. 5119-5136. doi:10.1007/s00382-019-04930-x
  9. Gille, S.T., 2008. Decadal-Scale Temperature Trends in the Southern Hemisphere Ocean. Journal of Climate, 21(18, pp. 4749-4765. doi:10.1175/2008JCLI2131.1
  10. Russell, J.L., Dixon, K.W., Gnanadesikan, A., Stouffer, R.J. and Toggweiler, J.R., 2006. The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean. Journal of Climate, 19(24, pp. 6382–6390. doi:10.1175/JCLI3984.1
  11. Marshall, G.J., 2003. Trends in the Southern Annular Mode from Observations and Reanalyses. Journal of Climate, 16(24), pp. 4134-4143. doi:10.1175/1520- 0442(2003)016<4134:TITSAM>2.0.CO;2
  12. Mokhov, I.I., Chernokulsky, A.V. and Osipov, A.M., 2020. Atmospheric Centers of Action in the Northern and Southern Hemispheres: Features and Variability. Russian Meteorology and Hydrology, 45(11), pp. 749-761. https://doi.org/10.3103/S1068373920110011
  13. Malinin, V.N. and Gordeeva, S.M., 2009. Fishing Oceanology of South-east Pacific. Volume 1. Variability of Habitat Factors. Saint Petersburg: RGGMU Publishing House, 278 p. (in Russian).
  14. Orsi, A.H., Whitworth III, T. and Nowlin Jr., W.D., 1995. On the Meridional Extent and Fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers, 42(5), pp. 641-673. doi:10.1016/0967-0637(95)00021-W
  15. Lim, E-P., Hendon, H.H., Hope, P., Chung, C., Delage, F. and McPhaden, M.J., 2019. Continuation of Tropical Pacific Ocean Temperature Trend May Weaken Extreme El Niño and Its Linkage to the Southern Annular Mode. Scientific Reports, 9, 17044. doi:10.1038/s41598-019-53371-3
  16. Sen Gupta, A. and England, M.H., 2006. Coupled Ocean-Atmosphere-Ice Response to Variations in the Southern Annular Mode. Journal of Climate, 19(18), pp. 4457-4486. doi:10.1175/JCLI3843.1
  17. Gong, D. and Wang, S., 1999. Definition of Antarctic Oscillation Index. Geophysical Research Letters, 26(4), pp. 459-462. doi:10.1029/1999GL900003
  18. Karoly, D.J., 1989. Southern Hemisphere Circulation Features Associated with El Niño– Southern Oscillation Events. Journal of Climate, 2(11), pp. 1239-1252. doi:10.1175/1520- 0442(1989)002<1239:SHCFAW>2.0.CO;2
  19. Voskresenskaya, E.N. and Marchukova, O.V., 2015. Qualitative Classification of the La Niña Events. Physical Oceanography, (3, pp. 14-24. doi:10.22449/1573-160X-2015-3-14-24
  20. Herman, A., 2015. Trends and Variability of the Atmosphere–Ocean Turbulent Heat Flux in the Extratropical Southern Hemisphere. Scientific Reports, 5, 14900. doi:10.1038/srep14900
  21. Yeo, S.R. and Kim, K.Y., 2015. Decadal Changes in the Southern Hemisphere Sea Surface Temperature in Association with El Niño–Southern Oscillation and Southern Annular Mode. Climate of Dynamics, 45(11–12, pp. 3227-3242. doi:10.1007/s00382-015-2535-z
  22. Ciasto, L.M., Simpkins, G.R. and England, M.H., 2015. Teleconnections between Tropical Pacific SST Anomalies and Extratropical Southern Hemisphere Climate. Journal of Climate, 28(1, pp. 56-65. doi:10.1175/JCLI-D-14-00438.1
  23. Yuan, X. and Yonekura, E., 2011. Decadal Variability in the Southern Hemisphere. Journal of Geophysical Research: Atmospheres, 116(D19, D19115. doi:10.1029/2011JD015673
  24. Fogt, R.L. and Bromwich, D.H., 2006. Decadal Variability of the ENSO Teleconnection to the High-Latitude South Pacific Governed by Coupling with the Southern Annular Mode. Journal of Climate, 19(6, pp. 979-997. doi:10.1175/JCLI3671.1
  25. Cai, W.J., Shi, G., Cowan, T., Bi, D. and Ribbe, J., 2005. The Response of the Southern Annular Mode, the East Australian Current, and the Southern Mid-latitude Ocean Circulation to Global Warming. Geophysical Research Letters, 32(23, L23706. doi:10.1029/2005GL024701
  26. Tauvale, L. and Tsuboki, K., 2019. Characteristics of Tropical Cyclones in the Southwest Pacific. Journal of the Meteorological Society of Japan. Ser. II, 97(3), pp. 711-731. doi:10.2151/jmsj.2019-042
  27. Fan, T., Deser, C. and Schneider, D.P., 2014. Recent Antarctic Sea Ice Trends in the Context of Southern Ocean Surface Climate Variations since 1950. Geophysical Research Letters, 41(7, pp. 2419-2426. doi:10.1002/2014GL059239
  28. Boyer, T.P., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Locarnini, R.A., Mishonov, A.V., Paver, C.R., Reagan, J.R. [et al.], 2018. World Ocean Database 2018. NOAA Atlas NESDIS 87. [online] Available at: https://www.ncei.noaa.gov/products/world- ocean-database [Accessed: 23 April 2021].
  29. Thomson, R.E. and Emery, W.J., 2014. Data Analysis Methods in Physical Oceanography. 3rd ed. Elsevier. 728 p. https://doi.org/10.1016/C2010-0-66362-0
  30. Hosoda, S, Ohira, T. and Nakamura, T., 2008. A Monthly Mean Dataset of Global Oceanic Temperature and Salinity Derived from Argo Float Observations. JAMSTEC Report of Research and Develoment, 8, pp. 47-59. doi:10.5918/jamstecr.8.47
  31. Abraham, J.P., Baringer, M., Bindoff, N.L., Boyer, T., Cheng, L.J., Church, J.A., Conroy, J.L., Domingues, C.M., Fasullo, J.T. [et al] , 2013. A Review of Global Ocean Temperature Observations: Implications for Ocean Heat Content Estimates and Climate Change. Reviews of Geophysics, 51(3), pp. 450-483. doi:10.1002/rog.20022
  32. Garreaud, R.D. and Battisti, D.S., 1999. Interannual (ENSO) and Interdecadal (ENSO-like) Variability in the Southern Hemisphere Tropospheric Circulation. Journal of Climate, 12(7), pp. 2113-2123. https://doi.org/10.1175/1520-0442(1999)012%3C2113:IEAIEL%3E2.0.CO;2
  33. Rostov, I.D., Dmitrieva, E.V., Rudykh, N.I. and Vorontsov, A.A., 2020. Climatic Changes in Thermal Conditions of Marginal Seas in the Western Pacific. Russian Meteorology and Hydrology, 45(3), pp. 169-178. doi:10.3103/S1068373920030048
  34. Talley, L.D., 2007. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Volume 2: Pacific Ocean. Southampton, U.K.: International WOCE Project Office, 326 p.
  35. Bretherton, C.S., Widmann, M., Dymnikov, V.P., Wallace, J.M. and Blade, I., 1999. The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. Journal of Climate, 12(7), pp. 1990-2009. https://doi.org/10.1175/1520-0442(1999)012%3C1990:TENOSD%3E2.0.CO;2
  36. Li, Z., Holbrook, N.J., Zhang, X., Oliver, E.C.J. and Cougnon, E.A., 2020. Remote Forcing of Tasman Sea Marine Heatwaves. Journal of Climate, 33(12), pp. 5337-5354. doi:10.1175/JCLI-D-19-0641.1
  37. Iudicone, D., Rodgers, K.B., Schopp, R. and Madec, G., 2007. An Exchange Window for the Injection of Antarctic Intermediate Water into the South Pacific. Journal of Physical Oceanography, 37(1), pp. 31-49. https://doi.org/10.1175/JPO2985.1
  38. Liu, Ch., Wang, Zh., Li, B., Cheng, Ch. and Xia, R., 2017. On the Response of Subduction in the South Pacific to an Intensification of Westerlies and Heat Flux in an Eddy Permitting Ocean Model. Advances in Atmospheric Sciences, 34(4), pp. 521-531. doi:10.1007/s00376- 016-6021-2
  39. Downes, S.M., Budnick, A.S., Sarmiento, J.L. and Farneti, R., 2011. Impacts of Wind Stress on the Antarctic Circumpolar Current Fronts and Associated Subduction. Geophysical Researches Letters, 38(11), L11605. doi:10.1029/2011GL047668
  40. Rostov, I.D. and Dmitrieva, E.V., 2021. Regional Features of Interannual Variations in Water Temperature in the Subarctic Pacific. Russian Meteorology and Hydrology, 46(2), pp. 106- 114. doi:10.3103/S1068373921020059
  41. Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2021. Climatic Changes of Thermal Conditions in the Pacific Subarctic at the Modern Stage of Global Warming. Physical Oceanography, 28(2), pp. 149-164. doi:10.22449/1573-160X-2021-2-149-164
  42. Mo, K.C., 2000. Relationships between Low-Frequency Variability in the Southern Hemisphere and Sea Surface Temperature Anomalies. Journal of Climate, 13(20), pp. 3599- 3610. doi:10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2
  43. Salinger, M.J., Renwick, J.A. and Mullan, A.B., 2001. Interdecadal Pacific Oscillation and South Pacific Climate. International Journal of Climatology, 21(14), pp. 1705-1721. doi:10.1002/joc.691
  44. Popova, V.V., 2009. Modern Temperature Changes of Near Surface Air in the North of Eurasia: Regional Tendencies and Role of Atmospheric Circulation. Izvestiya RAN. Seriya Geograficheskaya, (6, pp. 59-69 (in Russian).
  45. Kuksa, V.I., 1978. [Atlas of Intermediate and Subsurface Intermediate Waters of the World Ocean]. Moscow: Gidrometeoizdat, 83 p. (in Russian).
  46. Stepanov, V.N., 1983. [Oceanosphere]. Moscow: Mysl, 270 p. (in Russian).
  47. Koshlyakov, M.N. and Tarakanov, R.Yu., 2005. Intermediate Water Masses in the Southern Part of the Pacific Ocean. Oceanology, 45(4), pp. 455-473.
  48. Sokolov, S. and Rintoul, S.R., 2003. Subsurface Structure of Interannual Temperature Anomalies in the Australian Sector of the Southern Ocean. Journal of Geophysical Researches: Oceans, 108(C9), 3285. doi:10.1029/2002JC001494
  49. Iudicone, D., Madec, G. and McDougall, T.J., 2008. Water-Mass Transformations in a Neutral Density Framework and the Key Role of Light Penetration. Journal of Physical Oceanography, 38(7, pp. 1357-1376. doi:10.1175/2007JPO3464.1
  50. Tamsitt, V., Cerovečki, I., Josey, S.A., Gille, S.T. and Schulz, E., 2020. Mooring Observations of Air-Sea Heat Fluxes in Two Subantarctic Mode Water Formation Regions. Journal of Climate, 33(7), pp. 2757-2777. doi:10.1175/jcli-d-19-0653.1
  51. Cerovečki, I., Meijers, A., Mazloff, M., Gille, S., Tamsitt, V. and Holland, P., 2019. The Effects of Enhanced Sea Ice Export from the Ross Sea on Recent Cooling and Freshening of the Southeast Pacific. Journal of Climate, 32(7), pp. 2013-2035. doi:10.1175/jcli-d-18-0205.1
  52. Haumann, F.A., Gruber, N. and Münnich, M., 2020. Sea-Ice Induced Southern Ocean Subsurface Warming and Surface Cooling in a Warming Climate. AGU Advances, 1(2, e2019AV000132. doi:10.1029/2019AV000132
  53. Kidwell, A., Han, L., Jo, Y.-H. and Yan, X.-H., 2017. Decadal Western Pacific Warm Pool Variability: A Centroid and Heat Content Study. Scientific Reports, 7, 13141. doi:10.1038/s41598-017-13351-x

Download the article (PDF)