Interannual Variability of Thermal Characteristics in the Indian Ocean under the Conditions of Global Warming

I. D. Rostov, E. V. Dmitrieva, N. I. Rudykh

V. I. Il’ichev Pacific Oceanological Institute. Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation

e-mail: rostov@poi.dvo.ru

Abstract

Purpose. The purpose of this work is to clarify the tendencies and regional features of interannual changes in the surface air temperature (Ta), the sea surface temperature (SST), and the water temperature (Tw) in the upper 950-m layer in the Indian Ocean basin including the adjacent area of the Southern Ocean – up to 65°S over the past four decades, which are manifested as a result of planetary changes and a shift in the climate regime at the turn of the XX–XXI centuries.

Methods and Results. Based on the data of the Global meteorological network, reanalysis, optimal interpolation and the Global oceanographic data assimilation system GODAS (NOAA), the regional features and trends of interannual fluctuations in the water and air temperature, and their relationship with the variations in climatic indices and pressure fields in the centers of the atmosphere and wind action have been determined for the last 4 decades. The methods of a cluster, correlation, and regression analysis, and the apparatus of empirical orthogonal functions were used. The results obtained made it possible to characterize the degree of inhomogeneity of the responses of the atmosphere surface layer, SST, and vertical distribution of Tw to the ongoing global changes, to identify the isolated regions, and to quantify the rate of warming in these water areas.

Conclusions. Climatic changes in the atmosphere near-water layer and on the sea surface are expressed in positive trends (b) of changes in the SST fields and air temperature in most of the Indian Ocean basin. The values of the air temperature trends on land in the coastal areas are higher than those in the adjacent sea areas. The maximum values of the Ta trends (~ 0.5°C/10 years) over the water area of the region are noted in the area located to the north of the Madagascar Island, and those of the SST trends (~ 0.3–0.4°C/10 years) – in the central part of the ocean. In the Ta field, the individual areas with the minimal and negative values of Ta trends are observed in the northeastern, southwestern, and southern parts of the water area, and in the SST field – over a large area in the southern part of the ocean, namely, in the zone of influence of the cold Antarctic Circumpolar Current waters. The process of warming or cooling is significantly heterogeneous not only in space but also in time. In the upper 100-m layer of the water column, the spatial structure of the water temperature trends is rearranged. Below this layer, the maximum positive trends (on average 0.2–0.5°С per a decade for a region) are observed in the southern and southwestern parts of the water area, and the negative ones (-0.1…-0.2°С) – in the northwestern and southeastern parts. In course of the past 15 years, the largest relative increase of heat content in various layers occurred in the south of the ocean – it was by an order of magnitude higher than those in the other regions despite the insignificant SST trends.

Keywords

Indian Ocean, current climatic changes, regional features, water and air temperature, warming and cooling trends, climatic parameters, correlations

Acknowledgements

The work was carried out on the theme of the state task of POI FEB of RAS No. 121021700346-7. The authors thank the program developers for the opportunity to use the climatic data posted on the NOAA sites. The authors are grateful to the reviewer for the constructive comments.

Original russian text

Original Russian Text © I. D. Rostov, E. V. Dmitrieva, N. I. Rudykh, 2022, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 38, Iss. 1, pp. 53-72 (2022)

For citation

Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2022. Interannual Variability of Thermal Characteristics in the Indian Ocean under the Conditions of Global Warming. Physical Oceanography, 29(1), pp. 47-66. doi:10.22449/1573-160X-2022-1-47-66

DOI

10.22449/1573-160X-2022-1-47-66

References

  1. Gnanaseelan, C., Roxy, M.K. and Deshpande, A., 2017. Variability and Trends of Sea Surface Temperature and Circulation in the Indian Ocean. In: M. Rajeevan and S. Nayak, eds., 2017. Observed Climate Variability and Change over the Indian Region. Singapore: Springer, pp. 165-179. doi:10.1007/978-981-10-2531-0_10
  2. Desbruyères, D., McDonagh, E.L., King, B.A. and Thierry, V., 2017. Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat Hydrography. Journal of Climate, 30(6), pp. 1985-1997. doi:10.1175/JCLI-D-16-0396.1
  3. Lee, S.-K., Park, W., Baringer, M.O., Gordon, A.L., Huber, B. and Liu, Y., 2015. Pacific Origin of the Abrupt Increase in Indian Ocean Heat Content during the Warming Hiatus. Nature Geoscience, 8, pp. 445-450. doi:10.1038/ngeo2438
  4. Schott, F.A., Xie, Sh-P. and McCreary Jr., J.P., 2009. Indian Ocean Circulation and Climate Variability. Reviews of Geophysics, 47(1), RG1002. doi:10.1029/2007RG000245
  5. Li, Yu., Han, W., Zhang, L. and Wang, F., 2019. Decadal SST Variability in the Southeast Indian Ocean and Its Impact on Regional Climate. Journal of Climate, 32(19), pp. 6299-6318. doi:10.1175/JCLI-D-19-0180.1
  6. Roxy, M.K., Gnanaseelan, C., Parekh, A., Chowdary, J.S., Singh, Sh., Modi, A., Kakatkar, R., Mohapatra, S., Dhara, Ch., Shenoi, S.C. and Rajeevan, M., 2020. Indian Ocean Warming. In: R. Krishnan, J. Sanjay, C. Gnanaseelan, M. Mujumdar, A. Kulkarni and S. Chakraborty, eds., 2020. Assessment of Climate Change over the Indian Region. Singapore: Springer, pp. 191- 206. doi:10.1007/978-981-15-4327-2_10
  7. Blunden, J. and Boyer, T., 2021. State of the Climate in 2020. Bulletin of the American Meteorological Society, 102(8), pp. S1-S475. doi:10.1175/2021BAMSStateoftheClimate.1
  8. Luffman, J.J., Taschetto, A.S. and England, M.H., 2010. Global and Regional Climate Response to Late Twentieth-Century Warming over the Indian Ocean. Journal of Climate, 23(7), pp. 1660-1674. doi:10.1175/2009JCLI3086.1
  9. Roxy, M.K., Ritika, K., Terray, P. and Masson, S., 2014. The Curious Case of Indian Ocean Warming. Journal of Climate, 27(22), pp. 8501-8509. doi:10.1175/JCLI-D-14-00471.1
  10. Nieves, V., Willis, J.K. and Patzert, W.C., 2015. Recent Hiatus Caused by Decadal Shift in Indo-Pacific Heating. Science, 349(6247), pp. 532-535. doi:10.1126/science.aaa4521
  11. Arora, A., Rao, S.A., Chattopadhyay, R., Goswami, T., George, G., Sabeerali, C.T., 2016. Role of Indian Ocean SST Variability on the Recent Global Warming Hiatus. Global and Planetary Change, 143, pp. 21-30, doi:10.1016/j.gloplacha.2016.05.009
  12. Rao, S.A., Dhakate, A.R., Saha, S.K., Mahapatra, S., Chaudhari, H.S., Pokhrel, S. and Sahu, S.K., 2012. Why is Indian Ocean Warming Consistently? Climatic Change, 110(3–4), pp. 709- 719. doi:10.1007/s10584-011-0121-x
  13. Ummenhofer, C.C., Biastoch, A. and Böning, C.W., 2017. Multidecadal Indian Ocean Variability Linked to the Pacific and Implications for Preconditioning Indian Ocean Dipole Events. Journal of Climate, 30(5), pp. 1739-1751. doi:10.1175/JCLI-D-16-0200.1
  14. Dong, Lu and McPhaden, M.J., 2016. Interhemispheric SST Gradient Trends in the Indian Ocean Prior to and during the Recent Global Warming Hiatus. Journal of Climate, 29(24), pp. 9077-9095. doi:10.1175/JCLI-D-16-0130.1
  15. Wang, C., 2019. Three-Ocean Interactions and Climate Variability: a Review and Perspective. Climate Dynamics, 53(7–8), pp. 5119-5136. doi:10.1007/s00382-019-04930-x
  16. Chowdary, J.S., Xie, Sh.-P., Tokinaga, H., Okumura, Yu.M., Kubota, H., Johnson, N. and Zheng, X.-T., 2012. Interdecadal Variations in ENSO Teleconnection to the Indo–Western Pacific for 1870–2007. Journal of Climate, 25(5), pp. 1722-1744. doi:10.1175/JCLI-D-11- 00070.1
  17. Li, Y., Han, W., Hu, A., Meehl, G.A. and Wang, F., 2018. Multidecadal Changes of the Upper Indian Ocean Heat Content during 1965–2016. Journal of Climate, 31(19), pp. 7863-7884. doi:10.1175/JCLI-D-18-0116.1
  18. Han, W., Vialard, J., McPhaden, M.J., Lee, T., Masumoto, Yu., Feng, M. and de Ruijter, W.P., 2014. Indian Ocean Decadal Variability: A Review. Bulletin of the American Meteorological Society, 95(11), pp. 1679-1703. doi:10.1175/BAMS-D-13-00028.1
  19. Santoso, A., Gupta, A.S. and England, M.H., 2010. Genesis of Indian Ocean Mixed Layer Temperature Anomalies: A Heat Budget Analysis. Journal of Climate, 23(20), pp. 5375-5403. doi:10.1175/2010JCLI3072.1
  20. Alory, G. and Meyers, G., 2009. Warming of the Upper Equatorial Indian Ocean and Changes in the Heat Budget (1960–99). Journal of Climate, 22(1), pp. 93-113. doi:10.1175/2008JCLI2330.1
  21. Gong, D. and Wang, S., 1999. Definition of Antarctic Oscillation Index. Geophysical Research Letters, 26(4), pp. 459-462. doi:10.1029/1999GL900003
  22. Alory, G., Wijffels, S. and Meyers, G., 2007. Observed Temperature Trends in the Indian Ocean over 1960–1999 and Associated Mechanisms. Geophysical Research Letters, 34(2), L02606. doi:10.1029/2006GL028044
  23. Lyu, K., Zhang, X., Church, J.A. and Wu, Q., 2020. Processes Responsible for the Southern Hemisphere Ocean Heat Uptake and Redistribution under Anthropogenic Warming. Journal of Climate, 33(9), pp. 3787-3807. doi:10.1175/JCLI-D-19-0478.1
  24. Giglio, D. and Johnson, G.C., 2016. Subantarctic and Polar Fronts of the Antarctic Circumpolar Current and Southern Ocean Heat and Freshwater Content Variability: A View from Argo. Journal of Physical Oceanography, 46(3), pp. 749-768. doi:10.1175/JPO-D-15-0131.1
  25. Armour, K.C., Marshall, J., Scott, J.R., Donohoe, A. and Newsom, E.R., 2016. Southern Ocean Warming Delayed by Circumpolar Upwelling and Equatorward Transport. Nature Geoscience, 9, pp. 549-554. doi:10.1038/ngeo2731
  26. Gao, L., Rintoul, S.R. and Yu, W., 2018. Recent Wind-Driven Change in Subantarctic Mode Water and Its Impact on Ocean Heat Storage. Nature Climate Change, 8, pp. 58-63. doi:10.1038/s41558-017-0022-8
  27. Levitus, S., Antonov, J.I., Boyer, T.P., Baranova, O.K., Garcia, H.E., Locarnini, R.A., Mishonov, A.V., Reagan, J.R., Seidov, D., Yarosh, E.S. and Zweng, M.M., 2012. World Ocean Heat Content and Thermosteric Sea Level Change (0–2000 m), 1955–2010. Geophysical Research Letters, 39(10), L10603. doi:10.1029/2012GL051106
  28. Häkkinen, S., Rhines, P.B. and Worthen, D.L., 2016. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends. Journal of Climate, 29(13), pp. 4949-4963. doi:10.1175/JCLI-D-15-0607.1
  29. Mokhov, I.I., Chernokulsky, A.V. and Osipov, A.M., 2020. Atmospheric Centers of Action in the Northern and Southern Hemispheres: Features and Variability. Russian Meteorology and Hydrology, 45(11), pp. 749-761. https://doi.org/10.3103/S1068373920110011
  30. Rostov, I.D., Dmitrieva, E.V., Rudykh, N.I. and Vorontsov, А.А., 2020. Climatic Changes in Thermal Conditions of Marginal Seas in the Western Pacific. Russian Meteorology and Hydrology, 45(3), pp. 169-178. doi:10.3103/S1068373920030048
  31. Boyer, T.P., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Locarnini, R.A., Mishonov, A.V., Paver, C.R., Reagan, J.R. [et al.], 2018. World Ocean Database 2018. NOAA Atlas NESDIS 87. [online] Available at: https://www.ncei.noaa.gov/products/worldocean- database [Accessed: 23 April 2021].
  32. Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2021. Interannual Variability of Thermal Conditions in the Extratropical Zone of the South Pacific at the Turn of the XX–XXI Centuries. Physical Oceanography, 28(6), pp. 612-631. doi:10.22449/1573-160X-2021-6-612-631
  33. Zhang, Y., Feng, M., Du, Y., Phillips, H.E., Bindoff, N.L. and McPhaden, M.J., 2018. Strengthened Indonesian Throughflow Drives Decadal Warming in the Southern Indian Ocean. Geophysical Research Letters, 45(12), pp. 6167-6175. doi:10.1029/2018GL078265
  34. Li, Y., Han, W. and Zhang, L., 2017. Enhanced Decadal Warming of the Southeast Indian Ocean during the Recent Global Surface Warming Slowdown. Geophysical Research Letters, 44(19), pp. 9876-9884. doi:10.1002/2017GL075050
  35. Osipov, A.M. and Gushchina, D.Yu., 2018. El Niño 2015/2016: Evolution, Mechanisms, and Concomitant Remote Anomalies. Fundamental and Applied Climatology, (3), pp. 54-81. doi:10.21513/2410-8758-2018-3-54-81 (in Russian).
  36. Yang, J., Liu, Q. and Liu, Zh., 2010. Linking Observations of the Asian Monsoon to the Indian Ocean SST: Possible Roles of Indian Ocean Basin Mode and Dipole Mode. Journal of Climate, 23(21), pp. 5889-5902. doi:10.1175/2010JCLI2962.1
  37. Behera, S.K. and Yamagata, T., 2001. Subtropical SST Dipole Events in the Southern Indian Ocean. Geophysical Research Letters, 28(2), pp. 327-330. doi:10.1029/2000GL011451
  38. Gupta, A.S. and England, M.H., 2006. Coupled Ocean-Atmosphere-Ice Response to Variations in the Southern Annular Mode. Journal of Climate, 19(18), pp. 4457-4486. doi:10.1175/JCLI3843.1
  39. Cai, W., 2006. Antarctic Ozone Depletion Causes an Intensification of the Southern Ocean Super-Gyre Circulation. Geophysical Research Letters, 33(3), L03712. doi:10.1029/2005GL024911
  40. Roemmich, D., Gilson, J., Sutton, P. and Zilberman, N., 2016. Multidecadal Change of the South Pacific Gyre Circulation. Journal of Physical Oceanography, 46(6), pp. 1871-1883. doi:10.1175/JPO-D-15-0237.1

Download the article (PDF)