Modeling of Marine Ecosystems: Experience, Modern Approaches, Directions of Development (Review). Part 1: End-to-End Models

S. V. Berdnikov1, ✉, V. V. Selyutin1, F. A. Surkov2, Yu. V. Tyutyunov1

1 Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences (SSC RAS), Rostov-on-Don, Russian Federation

2 Southern Federal University (SFedU), Rostov-on-Don, Russian Federation

e-mail: berdnikovsv@yandex.ru

Abstract

Purpose. Despite of a relatively short history of marine systems modeling, which started in late 1960s – early 1970s, this discipline is developing quite intensively. Publications on marine system modeling number in the thousands. The purpose of the article is to review the achievements accumulated in this field. The main attention is paid to the general principles in marine systems modeling, and to the spectrum of the applied modern approaches. The results of analysis of more than 200 sources, i.e. research papers, monographs, sections in books, internet-resources, are summarized in the paper of two parts published separately.

Methods and Results. Over the past decades, our understanding of the patterns of marine ecosystems functioning has increased significantly, as well as the possibilities of ecological monitoring and information technologies. At the same time, the increasing number of global and regional environmental programs and projects in the field of rational use of marine resources, protection of marine ecosystems, and assessment of the climate change impacts has resulted in growth of demands for quantitative tools providing the ecosystem-based support of the initiatives in rational management of sea resources. This, in its turn, has required more complex multi-component models and led to significant increase in the number of such models. The first part of this review is focused on the end-to-end models which represent the complex integrative tools assisting in taking correct decisions for rational management of marine resource.

Conclusions. Providing testing of scenarios “what, if”, the end-to-end models are the effective modeling instruments for assessing the consequences of climatic and anthropogenic impacts on all the trophic levels of marine ecosystems including bio-geo-chemical cycle, microbial loop, and various kinds of detritus. These models are not intended for taking tactical decisions (in such cases, local object-oriented sub-models should be used), but they are indispensable instruments in strategic planning and complex assessing of the management strategies.

Keywords

marine ecosystems, end-to-end modeling, trophodynamic models, harvesting models, information technologies

Acknowledgements

The work was carried out within the framework of the state task of SSC RAS for 2022 on theme No. 122013100131-9 “Geoinformation analyses, and modeling of marine and terrestrial ecosystems in the South of Russia”.

Original russian text

Original Russian Text © S. V. Berdnikov, V. V. Selyutin, F. A. Surkov, Yu. V. Tyutyunov, 2022, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 38, Iss. 1, pp. 105-122 (2022)

For citation

Berdnikov, S.V., Selyutin, V.V., Surkov, F.A. and Tyutyunov, Yu.V., 2022. Modeling of Marine Ecosystems (Review): Experience, Modern Approaches, Directions of Development. 1. End-to-End Models. Physical Oceanography, 29(1), pp. 98-114. doi:10.22449/1573-160X-2022-1-98-114

DOI

10.22449/1573-160X-2022-1-98-114

References

  1. Piroddi, C., Teixeira, H., Lynam, C.P., Smith, C., Alvarez, M.C., Mazik, K., Andonegi, E., Churilova, T., Tedesco, L., [et al.], 2015. Using Ecological Models to Assess Ecosystem Status in Support of the European Marine Strategy Framework Directive. Ecological Indicators, 58, pp. 175-191. https://doi.org/10.1016/j.ecolind.2015.05.037
  2. Shabtay, A., Portman, M.E., Ofir, E., Carmel, Y. and Gal, G., 2018. Using Ecological Modelling in Marine Spatial Planning to Enhance Ecosystem-Based Management. Marine Policy, 95, pp. 14-23. https://doi.org/10.1016/j.marpol.2018.06.018
  3. Berdnikov, S.V., Kulygin, V.V., Sorokina, V.V., Dashkevich, L.V. and Sheverdyaev, I.V., 2019. An Integrated Mathematical Model of the Large Marine Ecosystem of the Barents Sea and the White Sea as a Tool for Assessing Natural Risks and Efficient Use of Biological Resources. Doklady Earth Sciences, 487(5), pp. 963-968. https://doi.org/10.1134/S1028334X19080117
  4. Brasier, M.J., Constable, A., Melbourne-Thomas, J., Trebilco, R., Griffiths, H., Van de Putte, A. and Sumner, M., 2019. Observations and Models to Support the First Marine Ecosystem Assessment for the Southern Ocean (MEASO). Journal of Marine Systems, 197, 103182. https://doi.org/10.1016/j.jmarsys.2019.05.008
  5. Sarkisyan, A.S., 1977. [Numerical Analysis and Forecast of Sea Currents]. Leningrad: Gidrometeoizdat, 182 p. (in Russian).
  6. Chernov, I.A., 2018. Coupling General Ocean Circulation Models with the BFM Marine Ecosystem Model. Transactions of KarRC RAS. Series: Mathematical Modeling and Information Technologies, (7), pp. 100-116. https://doi.org/10.17076/mat830 (in Russian).
  7. Krukier, L.A., 1991. Mathematical Modelling of Azov Sea Gydrodynamics for Projects of Damb Building. Matematicheskoe Modelirovanie, 3(9), pp. 3-20. Available at: http://mi.mathnet.ru/mm2266 [Accessed: 15 January 2022] (in Russian).
  8. Surkov, F.A., Krukier, L.A. and Muratova, G.V., 1990. Numerical Modelling of the Sea of Azov's Dynamics Resulting from Narrowing of the Mouth of Taganrog Bay. Soviet Journal of Physical Oceanography, 1(6), pp. 551-559. https://doi.org/10.1007/BF02197014
  9. Chikin, A.L., Kleshchenkov, A.V. and Chikina, L.G., 2019. Simulating Salinity Variations in the Gulf of Taganrog at Storm Surges. Water Resources, 46(6), pp. 919-925. https://doi.org/10.1134/S0097807819060046
  10. Muratova, G.V. and Andreeva, E.M., 2009. Multigrid Method for Solving Convection- Diffusion Problems with Dominant Convection. Journal of Computational and Applied Mathematics, 226(1), pp. 77-83.
  11. Leonov, A.V., Filatov, N.N., Zdorovennov, R.E. and Zdorovennova, G.E., 2004. Functioning of the White Sea Ecosystem: Studying the Transformations of Organogenic Substances Using a Mathematical Model. Water Resources, 31(5), pp. 511-530. https://doi.org/10.1023/B:WARE.0000041920.84564.0b
  12. Selyutin, V.V. and Zadorozhnaya, N.S., 2001. [Modeling of Primary Links of the Azov Sea Ecosystem]. In: G. G. Matishov, (ed.), 2001. Environment, Biota, Modeling of Ecological Processes in the Sea of Azov. Apatity: KSC RAS, pp. 336-368 (in Russian).
  13. Kulygin, V., Berdnikov, S., Selyutin, V. and Dashkevich, L., 2016. Oxygen Depletion Risk Assessment in Shallow Water Bodies of the Sea of Azov Region. In: SGEM, 2016. SGEM2016 Conference Proceedings. Book 3, Vol. 2, pp. 799-806. https://doi.org/10.5593/SGEM2016/B32/S15.104
  14. Sukhinov, A.I., Chistyakov, A.E., Semenyakina, A.A. and Nikitina, A.V., 2016. Numerical Modeling of Ecologic Situation of the Azov Sea with Using Schemes of Increased Order of Accuracy on Multiprocessor Computer System. Computer Research and Modeling, 8(1), pp. 151-168. doi:10.20537/2076-7633-2016-8-1-151-168 (in Russian).
  15. Dombrovskiy, Yu.A., Il'ichev, V.G., Selyutin, V.V. and Surkov, F.A., 1990. [Theoretical and Applied Aspects of Modeling the Primary Productivity of Water Bodies]. Rostov on Don: Rostov State University, 174 p. (in Russian).
  16. Selyutin, V.V., 1994. Matter Cycle and Energy Flow in Ecological Systems: From the Model of a System to a System of the Models. OP&PM Surveys on Applied and Industrial Mathematics, 1(6), pp. 957-973 (in Russian).
  17. Johanson, A.N., Oschlies, A., Hasselbring, W. and Worm, B., 2017. SPRAT: A Spatially- Explicit Marine Ecosystem Model Based on Population Balance Equations. Ecological Modelling, 349, pp. 11-25. https://doi.org/10.1016/j.ecolmodel.2017.01.020
  18. Vorovich, I.I., ed., 1981. [Rational Use of Water Resources in the Azov Sea Basin: Mathematical Models]. Moscow: Nauka, 360 p. (in Russian).
  19. Vorovich, I.I., Gorstko, A.B., Dombrovskii, Yu.A., Zhdanov, Yu.A. and Surkov, F.A., 1981. The Use of a Mathematical Model of the Sea-of-Azov Ecosystem for the Investigation of the Functioning Regularities and System Structure. Doklady Akademii Nauk SSSR, 259(2), pp. 302-306. Available at: http://mi.mathnet.ru/dan44590 [Accessed: 15 January 2022] (in Russian).
  20. Vorovich, I.I., Gorstko, A.B., Dombrovskii, Yu.A., Zhdanov, Yu.A. and Surkov, F.A., 1981. General Characteristics and Description of the Azov Sea Simulation Model. Doklady Akademii Nauk SSSR, 256(5), pp. 1052-1056. Available at: http://mi.mathnet.ru/dan44234 [Accessed: 15 January 2022] (in Russian).
  21. Selyutin, V.V., 2019. Small Parameters and Reduced Ecological Models. In: SSC RAS, 2019. Ecology. Economy. Informatics. System Analysis and Mathematical Modeling of Ecological and Economic Systems. Rostov on Don: SSC RAS. Vol. 1, iss. 4, pp. 241-244. https://doi.org/10.23885/2500-395X-2019-1-4-241-244 (in Russian).
  22. Daewel, U., Schrum, C. and Macdonald, J.I., 2019. Towards End-to-End (E2E) Modelling in a Consistent NPZD-F Modelling Framework (ECOSMO E2E_v1.0): Application to the North Sea and Baltic Sea. Geoscientific Model Development, 12(5), pp. 1765-1789. https://doi.org/10.5194/gmd-12-1765-2019
  23. Hannah, C., Vezina, A. and St. John, M., 2010. The Case for Marine Ecosystem Models of Intermediate Complexity. Progress in Oceanography, 84(1–2), pp. 121-128. https://doi.org/10.1016/j.pocean.2009.09.015
  24. Matishov, G.G., Gargopa, Yu.M., Berdnikov, S.V. and Dzhenyuk, S.L., 2006. [Regularities of Ecosystem Processes in the Sea of Azov]. Moscow: Nauka, 304 p. (in Russian).
  25. Selyutin, V. and Shabas, I., 2017. A Simplified Approach to Designing of Compartmental Models of Spatial-Temporal Dynamics and Matter Cycling in Aquatic Ecosystems. In: SGEM, 2017. 17th International Multidisciplinary Scientific GeoConference SGEM 2017 : Proceedings. Book 21, pp. 45-52. https://doi.org/10.5593/sgem2017/21/S07.007
  26. Tyutyunov, Yu.V., Sapoukhina, N.Yu., Senina, I.N. and Arditi, R., 2002. Explicit Model for Searching Behavior of Predator. Journal of General Biology, 63(2), pp. 137-148 (in Russian).
  27. Tyutyunov, Yu.V. and Titova, L.I., 2017. Simple Models for Studying Complex Spatiotemporal Patterns of Animal Behaviour. Deep Sea Research Part II: Topical Studies in Oceanography, 140, pp. 193-202. https://doi.org/10.1016/j.dsr2.2016.08.010
  28. Tyutyunov, Yu.V., Zagrebneva, A.D. and Azovsky, A.I., 2020. Spatiotemporal Pattern Formation in a Prey-Predator System: The Case Study of Short-Term Interactions between Diatom Microalgae and Microcrustaceans. Mathematics, 8(7), 1065. https://doi.org/10.3390/math8071065
  29. Huse, G., Giske, J. and Salvanes, A.G.V., 2002. Individual-Based Models. In: P. J. Hart and J. D. Reynolds (Eds.), 2002. Handbook of Fish Biology and Fisheries. Oxford: Blackwell Science. Vol. 2, Chapter 11, pp. 228-248. https://doi.org/10.1002/9780470693919.ch11
  30. DeAngelis, D.L. and Mooij, W.M., 2005. Individual-Based Modeling of Ecological and Evolutionary Processes. Annual Review of Ecology, Evolution, and Systematics, 36, pp. 147-168. https://doi.org/10.1146/annurev.ecolsys.36.102003.152644
  31. Grimm, V. and Railsback, S.F., 2005. Individual-Based Modeling and Ecology. Princeton: Princeton University Press, 448 p.
  32. Breckling, B., Middelhoff, U. and Reuter, H., 2006. Individual-Based Models as Tools for Ecological Theory and Application: Understanding the Emergence of Organizational Properties in Ecological Systems. Ecological Modelling, 194(1–3), pp. 102-113. https://doi.org/10.1016/j.ecolmodel.2005.10.005
  33. Abecassis, M., Senina, I., Lehodey, P., Gaspar, P., Parker, D., Balazs, G. and Polovina, J., 2013. A Model of Loggerhead Sea Turtle (Caretta caretta) Habitat and Movement in the Oceanic North Pacific. PLOS ONE, 8(9), e73274. https://doi.org/10.1371/journal.pone.0073274
  34. Phillips, J.S., Gupta, A.S., Senina, I., van Sebille, E., Lange, M., Lehodey, P., Hampton, J. and Nicol, S., 2018. An Individual-Based Model of Skipjack Tuna (Katsuwonus pelamis) Movement in the Tropical Pacific Ocean. Progress in Oceanography, 164, pp. 63–74. https://doi.org/10.1016/j.pocean.2018.04.007
  35. Ji, X., Sheng, J., Tang, L., Liu, D. and Yang, X., 2011. Process Study of Circulation in the Pearl River Estuary and Adjacent Coastal Waters in the Wet Season Using a Triply-Nested Circulation Model. Ocean Modelling, 38(1–2), pp. 138-160. https://doi.org/10.1016/j.ocemod.2011.02.010
  36. Park, K., Jung, H.-S., Kim, H.-S. and Ahn, S.-M., 2005. Three-Dimensional Hydrodynamic- Eutrophication Model (HEM-3D): Application to Kwang-Yang Bay, Korea. Marine Environmental Research, 60(2), pp. 171-193. https://doi.org/10.1016/j.marenvres.2004.10.003
  37. Kulawiak, M., Prospathopoulos, A., Perivoliotis, L., łuba, M., Kioroglou, S. and Stepnowski, A., 2010. Interactive Visualization of Marine Pollution Monitoring and Forecasting Data via a Web-based GIS. Computers & Geosciences, 36(8), pp. 1069-1080. https://doi.org/10.1016/j.cageo.2010.02.008
  38. IMBER, 2005. Science Plan and Implementation Strategy. IGBP Report No. 52. Stockholm: IGBP Secretariat, 76 p.
  39. Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., Dayton, P., Doukakis, P., Fluharty, D., [et al.], 2004. Ecosystem-Based Fishery Management. Science, 305(5682), pp. 346-347. https://doi.org/10.1126/science.1098222
  40. Olsen, E., Gjøsæter, H., Røttingen, I., Dommasnes, A., Fossum, P. and Sandberg, P., 2007. The Norwegian Ecosystem-Based Management Plan for the Barents Sea. ICES Journal of Marine Science, 64(4), pp. 599-602. https://doi.org/10.1093/icesjms/fsm005
  41. Link, J.S., Ihde, T.F., Harvey, C.J., Gaichas, S.K., Field, J.C., Brodziak, J.K.T., Townsend, H.M. and Peterman, R.M., 2012. Dealing with Uncertainty in Ecosystem Models: The Paradox of Use for Living Marine Resource Management. Progress in Oceanography, 102, pp. 102-114. https://doi.org/10.1016/j.pocean.2012.03.008
  42. Patrick, W.S. and Link, J.S., 2015. Myths that Continue to Impede Progress in Ecosystem- Based Fisheries Management. Fisheries, 40(4), pp. 155-160. https://doi.org/10.1080/03632415.2015.1024308
  43. Plagányi, E.E., 2007. Models for an Ecosystem Approach to Fisheries. Rome: Food and Agriculture Organization of the United Nations, 108 p.
  44. Olsen, E., Fay, G., Gaichas, S., Gamble, R., Lucey, S. and Jason, S., 2016. Link Ecosystem Model Skill Assessment. Yes We Can! PLOS One, 11(1), e0146467. https://doi.org/10.1371/journal.pone.0146467
  45. Fulton, E.A., Smith, A.D.M., Smith, D.C. and Johnson, P., 2014. An Integrated Approach Is Needed for Ecosystem Based Fisheries Management: Insights from Ecosystem-Level Management Strategy Evaluation. PLOS ONE, 9(1), e84242. https://doi.org/10.1371/journal.pone.0084242
  46. Lehuta, S., Girardin, R., Mahévas, S., Travers-Trolet, M. and Vermard, Y., 2016. Reconciling Complex System Models and Fisheries Advice: Practical Examples and Leads. Aquatic Living Resources, 29(2), 208. https://doi.org/10.1051/alr/2016022
  47. Cury, P.M., Shin, Y.-J., Planque, B., Durant, J.M., Fromentin, J.-M., Kramer-Schadt, S., Stenseth, N.C., Travers, M. and Grimm, V., 2008. Ecosystem Oceanography for Global Change in Fisheries. Trends in Ecology & Evolution, 23(6), pp. 338-346. https://doi.org/10.1016/j.tree.2008.02.005
  48. Rose, K.A., Allen, J.I., Artioli, Y., Barange, M., Blackford, J., Carlotti, F., Cropp, R., Daewel, U., Edwards, K., [et al.], 2010. End-to-End Models for the Analysis of Marine Ecosystems: Challenges, Issues, and Next Steps. Marine and Coastal Fisheries, 2(1), pp. 115-130. https://doi.org/10.1577/C09-059.1
  49. Liu, J., Dietz, T., Carpenter, S.R., Alberti, M., Folke, C., Moran, E., Pell, A.N., Deadman, P., Kratz, T., [et al.], 2007. Complexity of Coupled Human and Natural Systems. Science, 317(5844), pp. 1513-1516. doi:10.1126/science.1144004
  50. Perry, R.I., Ommer, R.E., Allison, E.H., Badjeck, M.‐C., Barange, M., Hamilton, L., Jarre, A., Quiñones, R.A. and Sumaila, U.R., 2010. Interactions between Changes in Marine Ecosystems and Human Communities. In: M. Barange, J. G. Field, R. P. Harris, E. E. Hofmann, R. I. Perry and F. Werner, eds., 2010. Marine Ecosystems and Global Change. New York: Oxford University Press. Chapter 8, pp. 221-251. doi:10.1093/acprof:oso/9780199558025.003.0008
  51. Travers, M., Shin, Y.-J., Jennings, S. and Cury, P., 2007. Towards End-to-End Models for Investigating the Effects of Climate and Fishing in Marine Ecosystems. Progress in Oceanography, 75(4), pp. 751-770. https://doi.org/10.1016/j.pocean.2007.08.001
  52. Travers, M., Shin, Y.-J., Jennings, S., Machu, E., Huggett, J.A., Field, J.G. and Cury, P.M., 2009. Two-Way Coupling Versus One-Way Forcing of Plankton and Fish Models to Predict Ecosystem Changes in the Benguela. Ecological Modelling, 220(21), pp. 3089-3099. https://doi.org/10.1016/j.ecolmodel.2009.08.016
  53. Shin, Y.-J. and Cury, P., 2001. Exploring Fish Community Dynamics through Size- Dependent Trophic Interactions Using a Spatialized Individual-Based Model. Aquatic Living Resources, 14(2), pp. 65-80. https://doi.org/10.1016/S0990-7440(01)01106-8
  54. Christensen, V. and Walters, C.J., 2004. Ecopath with Ecosim: Methods, Capabilities and Limitations. Ecological Modelling, 172(2–4), pp. 109-139. https://doi.org/10.1016/j.ecolmodel.2003.09.003
  55. Lehodey, P., Senina, I. and Murtugudde, R., 2008. A Spatial Ecosystem and Populations Dynamics Model (SEAPODYM) – Modeling of Tuna and Tuna-Like Populations. Progress in Oceanography, 78(4), pp. 304-318. https://doi.org/10.1016/j.pocean.2008.06.004
  56. Senina, I., Sibert, J. and Lehodey, P., 2008. Parameter Estimation for Basin-Scale Ecosystem-Linked Population Models of Large Pelagic Predators: Application to Skipjack Tuna. Progress in Oceanography, 78(4), pp. 319-335. https://doi.org/10.1016/j.pocean.2008.06.003
  57. Sibert, J., Senina, I., Lehodey, P. and Hampton J., 2012. Shifting from Marine Reserves to Maritime Zoning for Conservation of Pacific Bigeye Tuna (Thunnus obesus). Proceedings of the National Academy of Sciences of the United States of America, 109(44), pp. 18221-18225. https://doi.org/10.1073/pnas.1209468109
  58. Maury, O., Faugeras, B., Shin, Y.-J., Poggiale, J.-C., Ari, T.B. and Marsac, F., 2007. Modeling Environmental Effects on the Size-Structured Energy Flow through Marine Ecosystems. Part 1: The Model. Progress in Oceanography, 74(4), pp. 479-499. https://doi.org/10.1016/j.pocean.2007.05.002
  59. Gray, R., Fulton, E., Little, R. and Scott, R., 2006. Ecosystem Model Specification within an Agent Based Framework. Hobart, Tasmania: CSIRO, 127 p.
  60. Fulton, E.A., 2010. Approaches to End-to-End Ecosystem Models. Journal of Marine Systems, 81(1–2), pp. 171-183. https://doi.org/10.1016/j.jmarsys.2009.12.012
  61. Fulton, E.A., Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P., Ainsworth, C., Horne, P., Gorton, R., Gamble, R.J., [et al.], 2011. Lessons in Modelling and Management of Marine Ecosystems: the Atlantis Experience. Fish and Fisheries, 12(2), pp. 171-188. https://doi.org/10.1111/j.1467-2979.2011.00412.x
  62. Ortega-Cisneros, K., Cochrane, K. and Fulton, E.A., 2017. An Atlantis Model of the Southern Benguela Upwelling System: Validation, Sensitivity Analysis and Insights into Ecosystem Functioning. Ecological Modelling, 355, pp. 49-63. https://doi.org/10.1016/j.ecolmodel.2017.04.009
  63. Audzijonyte, A., Gorton, R., Kaplan, I. and Fulton, E.A., 2017. Atlantis User’s Guide. Part I: General Overview, Physics & Ecology. Hobart, Australia: CSIRO, 226 p.
  64. Audzijonyte, A., Gorton, R., Kaplan, I. and Fulton, E.A., 2017. Atlantis User’s Guide. Part II: Socio-Economics. Hobart, Australia: CSIRO, 2017. 109 p.
  65. Kaplan, I.C., Holland, D.S. and Fulton, E.A., 2014. Finding the Accelerator and Brake in an Individual Quota Fishery: Linking Ecology, Economics, and Fleet Dynamics of US West Coast Trawl Fisheries. ICES Journal of Marine Science, 71(2), pp. 308-319. https://doi.org/10.1093/icesjms/fst114
  66. Nyamweya, C., Sturludottir, E., Tomasson, T., Fulton, E.A., Taabu-Munyaho, A., Njiru, M. and Stefansson, G., 2016. Exploring Lake Victoria Ecosystem Functioning Using the Atlantis Modeling Framework. Environmental Modelling & Software, 86, pp. 158-167. https://doi.org/10.1016/j.envsoft.2016.09.019
  67. Fulton, E.A., Smith, A.D.M. and Smith, D.C., 2007. Alternative Management Strategies for Southeast Australian Commonwealth Fisheries: Stage 2: Quantitative Management Strategy Evaluation. CSIRO, 378 p.
  68. Hansen, C., Skern-Mauritzen, M., van der Meeren, G., Jähkel, A. and Drinkwater, K., 2016. Set-Up of the Nordic and Barents Seas (NoBa) Atlantis Model. Havforskningsinstituttet, 110 p. Available at: http://hdl.handle.net/11250/2408609 [Accessed: 15 January 2022].
  69. Forrest, R.E., Savina, M., Fulton, E.A. and Pitcher, T.J., 2015. Do Marine Ecosystem Models Give Consistent Policy Evaluations? A Comparison of Atlantis and Ecosim. Fisheries Research, 167, pp. 293-312. https://doi.org/10.1016/j.fishres.2015.03.010
  70. Pope, J.G., Bartolino, V., Kulatska, N., Bauer, B., Horbowy, J., Ribeiro, J.P.C., Sturludottir, E. and Thorpe, R., 2019. Comparing the Steady State Results of a Range of Multispecies Models between and Across Geographical Areas by the Use of the Jacobian Matrix of Yield on Fishing Mortality Rate. Fisheries Research, 209, pp. 259-270. https://doi.org/10.1016/j.fishres.2018.08.011
  71. Sturludottir, E., Desjardins, C., Elvarsson, B., Fulton, E.A., Gorton, R., Logemann, K. and Stefansson, G., 2018. End-to-End Model of Icelandic Waters Using the Atlantis Framework: Exploring System Dynamics and Model Reliability. Fisheries Research, 207, pp. 9-24. https://doi.org/10.1016/j.fishres.2018.05.026
  72. Hansen, C., Drinkwater, K.F., Jähkel, A., Fulton, E.A., Gorton, R. and Skern-Mauritzen, M., 2019. Sensitivity of the Norwegian and Barents Sea Atlantis End-to-End Ecosystem Model to Parameter Perturbations of Key Species. PLOS ONE, 14(2), e0210419. https://doi.org/10.1371/journal.pone.0210419
  73. Grimm, V. and Railsback, S.F., 2005. Individual-Based Modeling and Ecology. Princeton: Princeton University Press, 448 p.
  74. Uchmański, J. and Grimm, V., 1996. Individual-Based Modelling in Ecology: What Makes the Difference? Trends in Ecology & Evolution, 11(10), pp. 437-441. http://dx.doi.org/10.1016/0169-5347(96)20091-6
  75. Rose, K.A., Rutherford, E.S., McDermot, D.S., Forney, J.L. and Mills, E.L., 1999. Individual- Based Model of Yellow Perch and Walleye Populations in Oneida Lake. Ecological Monographs, 69(2), pp. 127-154. https://doi.org/10.2307/2657234
  76. Moss, S., Pahl-Wostl, C. and Downing, T., 2001. Agent-Based Integrated Assessment Modelling: the Example of Climate Change. Integrated Assessment, 2(1), pp. 17-30.
  77. Shin, Y.-J. and Cury, P., 2001. Simulation of the Effects of Marine Protected Areas on Yield and Diversity Using a Multispecies, Spatially Explicit, Individual-Based Model. In: G. H. Kruse, N. Bez, A. Booth, M. W. Dorn, S. Hills, R. N. Lipcius, D. Pelletier, C. Roy, S. J. Smith and D. Witherell, Eds., 2001. Spatial Processes and Management of Marine Populations: Proceedings of the Symposium on Spatial Processes and Management of Marine Populations, October 27–30, 1999, Anchorage, Alaska. Fairbanks, Alaska: University of Alaska. Vol. 17, pp. 627-642.
  78. Shin, Y.-J., Shannon, L.J. and Cury, P.M., 2004. Simulations of Fishing Effects on the Southern Benguela Fish Community Using an Individual-Based Model: Learning from a Comparison with ECOSIM. African Journal of Marine Science, 26(1), pp. 95-114. https://doi.org/10.2989/18142320409504052
  79. Travers, M., Shin, Y.-J., Shannon, L. and Cury, P., 2006. Simulating and Testing the Sensitivity of Ecosystem-Based Indicators to Fishing in the Southern Benguela Ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 63(4), pp. 943-956. https://doi.org/10.1139/f06-003
  80. Little, L.R., Fulton, E.A., Gray, R., Hayes, D., Lyne, V., Scott, R., Sainsbury, K. and McDonald, A.D., 2006. Multiple Use Management Strategy Evaluation for the North West Shelf: Results and Discussion. North West Shelf Joint Environmental Management Study Technical Report Vol. 18. Hobart, Tasmania: CSIRO, 50 p.
  81. McDonald, A.D., Fulton, E., Little, L.R., Gray, R., Sainsbury, K.J. and Lyne, V.D., 2006. Multiple-Use Management Strategy Evaluation for Coastal Marine Ecosystems Using InVitro. In: P. Perez and D. Batten, Eds., 2006. Complex Science for a Complex World: Exploring Human Ecosystems with Agents. Canberra: ANU Press. Chapter 13, pp. 283-300. Available at: https://www.jstor.org/stable/j.ctt2jbhz2.19 [Accessed: 15 January 2022].
  82. McDonald, A.D., Little, L.R., Gray, R., Fulton, E., Sainsbury, K.J. and Lyne, V.D., 2008. An Agent-Based Modelling Approach to Evaluation of Multiple-Use Management Strategies for Coastal Marine Ecosystems. Mathematics and Computers in Simulation, 78(2–3), pp. 401- 411. https://doi.org/10.1016/j.matcom.2008.01.039
  83. Fulton, E.A., Gray, R., Scott, R. and Sporcic, M., 2008. Modelling for Management: News from Ningaloo. In: K. Waples and E. Hollander, eds., 2008. Ningaloo Research Progress Report: Discovering Ningaloo – Latest Findings and Their Implications for Management. Murdoch, WA, pp. 91-94.
  84. Sansores, C.E., Reyes-Ramírez, F., Calderon-Aguilera, L.E. and Gómez, H.F., 2016. A Novel Modeling Approach for the “End-to-End” Analysis of Marine Ecosystems. Ecological Informatics, 32, pp. 39-52. https://doi.org/10.1016/j.ecoinf.2016.01.001
  85. Steele, J.H., Collie, J.S., Bisagni, J.J., Gifford, D.J., Fogarty, M.J., Link, J.S., Sullivan, B.K., Sieracki, M.E., Beet, A.R., [et al.], 2007. Balancing End-to-End Budgets of the Georges Bank Ecosystem. Progress in Oceanography, 74(4), pp. 423-448. https://doi.org/10.1016/j.pocean.2007.05.003
  86. Kearney, K.A., Stock, C., Aydin, K. and Sarmiento, J.L., 2012. Coupling Planktonic Ecosystem and Fisheries Food Web Models for a Pelagic Ecosystem: Description and Validation for the Subarctic Pacific. Ecological Modelling, 237–238, pp. 43-62. https://doi.org/10.1016/j.ecolmodel.2012.04.006
  87. Steele, J.H. and Ruzicka, J.J., 2011. Constructing End-to-End Models Using ECOPATH Data. Journal of Marine Systems, 87(3–4), pp. 227-238. https://doi.org/10.1016/j.jmarsys.2011.04.005
  88. Holt, J., Allen, J.I., Anderson, T.R., Brewin, R., Butenschön, M., Harle, J., Huse, G., Lehodey, P., Lindemann, C., [et al.], 2014. Challenges in Integrative Approaches to Modelling the Marine Ecosystems of the North Atlantic: Physics to Fish and Coasts to Ocean. Progress in Oceanography, 129(B), pp. 285-313. https://doi.org/10.1016/j.pocean.2014.04.024
  89. Madec, G. and the NEMO team, 2008. NEMO Ocean Engine. Note du Pole de Modélisation. Institut Pierre-Simon Laplace (IPSL), France. No. 27, 300 p. doi:10.5281/ZENODO.3248739
  90. Maury, O., Shin, Y.-J., Faugeras, B., Ari, T.B. and Marsac, F., 2007. Modelling Environmental Effects on the Size-Structured Energy Flow through Marine Ecosystems. Part 2: Simulations. Progress in Oceanography, 74(4), pp. 500-514. https://doi.org/10.1016/j.pocean.2007.05.001
  91. Lehodey, P., Murtugudde, R. and Senina, I., 2010. Bridging the Gap from Ocean Models to Population Dynamics of Large Marine Predators: A Model of Mid-Trophic Functional Groups. Progress in Oceanography, 84(1–2), pp. 69-84. https://doi.org/10.1016/j.pocean.2009.09.008
  92. Link, J.S., Fulton, E.A. and Gamble, R.J., 2010. The Northeast US Application of ATLANTIS: A Full System Model Exploring Marine Ecosystem Dynamics in a Living Marine Resource Management Context. Progress in Oceanography, 87(1–4), pp. 214-234. https://doi.org/10.1016/j.pocean.2010.09.020
  93. Punt, A.E., A'mar, T., Bond, N.A., Butterworth, D.S., de Moor, C.L., De Oliveira, J.A.A., Haltuch, M.A., Hollowed, A.B. and Szuwalski, C., 2013. Fisheries Management under Climate and Environmental Uncertainty: Control Rules and Performance Simulation. ICES Journal of Marine Science, 71(8), pp. 2208-2220. https://doi.org/10.1093/icesjms/fst057
  94. Tittensor, D.P., Eddy, T.D., Lotze, H.K., Galbraith, E.D., Cheung, W., Barange, M., Blanchard, J.L., Bopp, L., Bryndum-Buchholz, A., [et al.], 2018. A Protocol for the Intercomparison of Marine Fishery and Ecosystem Models: Fish-MIP v1.0. Geoscientific Model Development, 11(4), pp. 1421-1442. https://doi.org/10.5194/gmd-11-1421-2018
  95. Peck, M.A., Arvanitidis, C., Butenschön, M., Melaku Canu, D., Chatzinikolaou, E., Cucco, A., Domenici, P., Fernandes, J.A., Gasche, L., [et al.], 2018. Projecting Changes in the Distribution and Productivity of Living Marine Resources: A Critical Review of the Suite of Modelling Approaches Used in the Large European Project VECTORS. Estuarine, Coastal and Shelf Science, 201, pp. 40-55. https://doi.org/10.1016/j.ecss.2016.05.019

Download the article (PDF)