Climatic Structure of the Dynamic and Temperature Fronts in the Scotia Sea and the Adjacent Water Areas

Yu. V. Artamonov, E. A. Skripaleva, N. V. Nikolsky

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: artam-ant@yandex.ru

Abstract

Purpose. The aim of the work is to clarify the spatial structure of the climatic dynamic fronts (geostrophic current jets) and to estimate the relationship between their position and that of the large-scale temperature fronts on the surface of the Scotia Sea and the adjacent water areas in the southwestern part of the Atlantic sector of Antarctica.

Methods and Results. The daily averaged data arrays of the CMEMS (1993–2017) and NOAA OI SST (1982–2017) reanalysis at the regular 0.25° grid were used. The CMEMS reanalysis contains the sea surface geostrophic velocity values, the NOAA OI SST reanalysis – the sea surface temperature ones which were reduced to the climatic form through their averaging for each month of the corresponding periods. Position of the current jets and the temperature fronts was determined using the maximums of the geostrophic velocity components and the extremes of the temperature horizontal gradients. The updated scheme of the average long-term position of dynamic fronts was constructed. It shows that in the areas of the most pronounced bottom topography inhomogeneities (the northern boundary of the Falkland Plateau and the Tierra del Fuego shelf, the boundaries of the Falkland Islands shelf and the Birdwood Bank, the Shackleton Ridge and the South Shetland Islands shelf), the fronts do not change their latitudinal position during a year. It is revealed that in most of the water area, the temperature horizontal gradient extremes (temperature fronts) correspond to the geostrophic velocity maximums (dynamic fronts). The Northern and Central Branches of the Antarctic Circumpolar Current are most clearly manifested in the temperature field. In general, in the water area under study, the average annual latitudinal position of the Subantarctic and Antarctic Polar Fronts is displaced to the south relative to the position of the Northern and Central branches jets of the Antarctic Circumpolar Current by 0.25–0.5° and 0.25–1°, respectively.

Conclusions. It is shown that, being influenced by the bottom topography, the large-scale jets of geostrophic currents form intense topographic meanders and recirculation branches which are stably manifested on the climatic scale. The Antarctic Circumpolar Current branches being affected by the bottom topography, can merge forming the joint flows, and then diverge forming a system of separate jets again. It is found that the main spatial features of frontal structure in the geostrophic velocities field persist throughout the whole year and are conditioned mainly by the bottom topography. The most of the dynamic fronts are shown to be clearly pronounced in the temperature field on the surface during a year. A high level of linear correlation between the positions of temperature fronts and current jets was revealed; the correlation coefficient values are 0.6–0.97.

Keywords

Scotia Sea, Drake Passage, Weddell Sea, sea surface temperature, satellite altimetry, temperature horizontal gradients, geostrophic currents, bottom topography

Acknowledgements

The work was carried out within the framework of the state assignment of FSBSI FRC MHI No. 0555-2021-0004 "Fundamental studies of oceanological processes that determine state and evolution of marine environment under the influence of natural and anthropogenic factors based on the observation and modeling methods".

Original russian text

Original Russian Text © Yu. V. Artamonov, E. A. Skripaleva, N. V. Nikolsky, 2022, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 38, Iss. 2, pp. 127-150 (2022)

For citation

Artamonov, Yu.V., Skripaleva, E.A. and Nikolsky, N.V., 2022. Climatic Structure of the Dynamic and Temperature Fronts in the Scotia Sea and the Adjacent Water Areas. Physical Oceanography, 29(2), pp. 117-138. doi:10.22449/1573-160X-2022-2-117-138

DOI

10.22449/1573-160X-2022-2-117-138

References

  1. Guretsky, V.V., 1987. Surface Thermal Fronts in the Atlantic Sector of the Southern Ocean. Meteorologiya i Gidrologiya, (8), pp. 81-89 (in Russian).
  2. Peterson, R.G. and Stramma, L., 1991. Upper-Level Circulation in the South Atlantic Ocean. Progress in Oceanography, 26(1), pp. 1-73. doi:10.1016/0079-6611(91)90006-8
  3. Orsi, A.H., Whitworth III, Th. and Nowlin Jr., W.D., 1995. On the Meridional Extent and Fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers, 42(5), pp. 641-673. doi:10.1016/0967-0637(95)00021-W
  4. Artamonov, Yu.V., Bulgakov, N.P., Lomakin, P.D., Skripaleva, E.A., Artamonov, A.Yu. and Stanichny, S.V., 2005. Structure and Seasonal Variability of Large-Scale Fronts in the Southwestern Atlantic and Adjacent Basins of the Antarctica Based on Hydrological and Satellite Data. Oceanology, 45(5), pp. 617-630.
  5. Sokolov, S. and Rintoul, S.R., 2009. The Circumpolar Structure and Distribution of the Antarctic Circumpolar Current Fronts: 1. Mean Circumpolar Paths. Journal of Geophysical Research: Oceans, 114(C11), C11018. doi:10.1029/2008JC005108
  6. Sokolov, S. and Rintoul, S.R., 2009. Circumpolar Structure and Distribution of the Antarctic Circumpolar Current Fronts: 2. Variability and Relationship to Sea Surface Height. Journal of Geophysical Research: Oceans, 114(C11), C11019. doi:10.1029/2008JC005248
  7. Chapman, C.C., Lea , M.-A., Meyer, A., Sallée, J.-B. and Hindell,  M., 2020. Defining Southern Ocean Fronts and Their Influence on Biological and Physical Processes in a Changing Climate. Nature Climate Change, 10, pp. 209-219. doi:10.1038/s41558-020-0705-4
  8. Maslennikov, V.V., 2003. Climatic Variability and Marine Ecosystem of the Antarctic. Moscow: VNIRO Publishing, 295 p. (in Russian).
  9. Turner, J., 2004. The El Niño – Southern Oscillation and Antarctica. International Journal of Climatology, 24(1), pp. 1-31. doi:10.1002/joc.965
  10. Sallée, J.-B., Speer, K. and Morrow, R., 2008. Response of the Antarctic Circumpolar Current to Atmospheric Variability. Journal of Climate, 21(12), pp. 3020-3039. doi:10.1175/2007JCLI1702.1
  11. Meredith, M.P., Murphy, E.J., Hawker, E.J., King, J.C. and Wallace, M.I., 2008. On the Interannual Variability of Ocean Temperatures around South Georgia, Southern Ocean: Forcing by El Niño/Southern Oscillation and the Southern Annular Mode. Deep-Sea Research Part II: Topical Studies in Oceanography, 55(18–19), pp. 2007-2022. doi:10.1016/j.dsr2.2008.05.020
  12. Sokolov, S. and Rintoul, S.R., 2007. On the Relationship between Fronts of the Antarctic Circumpolar Current and Surface Chlorophyll Concentrations in the Southern Ocean. Journal of Geophysical Research: Oceans, 112(C7), C07030. doi:10.1029/2006JC004072
  13. Venables, H., Meredith, M.P., Atkinson, A. and Ward, P., 2012. Fronts and Habitat Zones in the Scotia Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 59–60, pp. 14- 24. doi:10.1016/j.dsr2.2011.08.012
  14. Palter, J.B., Marinov, I., Sarmiento, J.L. and Gruber, N., 2013. Large-Scale, Persistent Nutrient Fronts of the World Ocean: Impacts on Biogeochemistry. In: D. Barceló and A. G. Kostianoy, 2013. The Handbook of Environmental Chemistry. Berlin, Heidelberg: Springer, pp. 1-38. doi:10.1007/698_2013_241
  15. Lohmann, R. and Belkin, I.M., 2014. Organic Pollutants and Ocean Fronts across the Atlantic Ocean: A Review. Progress in Oceanography, 128, pp. 172-184. doi:10.1016/j.pocean.2014.08.013
  16. Nemirovskaya, I.A. and Kravchishina, M.D., 2016. Variability of Suspended Particulate Matter Concentrations and Organic Compounds in Frontal Zones of the Atlantic and Southern Oceans. Oceanology, 56(1), pp. 55-64. doi:10.1134/S0001437016010124
  17. Patterson, S.L. and Sievers, H.A., 1980. The Weddell-Scotia Confluence. Journal of Physical Oceanography, 10(10), pp. 1584-1610. doi:10.1175/1520-0485(1980)010<1584:TWSC>2.0.CO;2
  18. Artamonov, Yu.V. and Skripaleva, E.A., 2005. The Structure and Seasonal Variability of the Large-Scale Fronts in the Atlantic Ocean on the Basis of Satellite Data. Issledovaniye Zemli iz Kosmosa, (4), pp. 62-75 (in Russian).
  19. Artamonov, Yu.V., Lomakin, P.D. and Skripaleva, E.A., 2008. Seasonal and Interannual Variability of the Characteristics of Scotia-Sea Front Based on the Satellite Measurements of Sea-Surface Temperature. Physical Oceanography, 18(1), pp. 52-62. doi:10.1007/s11110-008- 9009-3
  20. Artamonov, Yu.V. and Skripaleva, E.A., 2016. Oceanographic Research of Marine Hydrophysical Institute in the Southern Ocean. Physical Oceanography, (6), pp. 56-66. doi:10.22449/1573-160X-2016-6-56-66
  21. Freeman, N.M., Lovenduski, N.S. and Gent, P.R., 2016. Temporal Variability in the Antarctic Polar Front (2002–2014). Journal of Geophysical Research: Oceans, 121(10), pp. 7263-7276. doi:10.1002/2016JC012145
  22. Koshlyakov, M.N., Lisina, I.I., Morozov, E.G. and Tarakanov, R.Yu., 2007. Absolute Geostrophic Currents in the Drake Passage on the Basis of Observations in 2003 and 2005. Oceanology, 47(4), pp. 451-463. doi:10.1134/S0001437007040029
  23. Gladyshev, S.V., Koshlyakov, M.N. and Tarakanov, R.Yu., 2008. Currents in the Drake Passage Based on Observations in 2007. Oceanology, 48(6), pp. 759-770. doi:10.1134/S0001437008060015
  24. Koshlyakov, M.N., Gladyshev, S.V., Tarakanov, R.Yu. and Fedorov, D.A., 2011. Currents in the Western Drake Passage according to the Observations in January of 2010. Oceanology, 51(2), pp. 187-198. doi:10.1134/S000143701102007X
  25. Koshlyakov, M.N., Gladyshev, S.V., Tarakanov, R.Yu. and Fedorov, D.A., 2013. Currents in the Drake Passage by the Observations in October–November of 2011. Oceanology, 53(1), pp. 1-12. doi:10.1134/S0001437013010062
  26. Tarakanov, R.Yu. and Gritsenko, A.M., 2018. Jets of the Antarctic Circumpolar Current in the Drake Passage Based on Hydrographic Section Data. Oceanology, 58(4), pp. 503-516. doi:10.1134/S0001437018040100
  27. Naveira Garabato, A.C., Stevens, D.P. and Heywood, K.J., 2003. Water Mass Conversion, Fluxes, and Mixing in the Scotia Sea Diagnosed by an Inverse Model. Journal of Physical Oceanography, 33(12), pp. 2565-2587. doi:10.1175/1520- 0485(2003)033<2565:WMCFAM>2.0.CO;2
  28. Graham, R.M., de Boer, A.M., Heywood, K.J., Chapman, M.R. and Stevens, D.P., 2012. Southern Ocean Fronts: Controlled by Wind or Topography? Journal of Geophysical Research: Oceans, 117(C8), C08018. doi:10.1029/2012JC007887
  29. Thorpe, S.E., Heywood, K.J., Brandon, M.A. and Stevens, D.P., 2002. Variability of the Southern Antarctic Circumpolar Current Front North of South Georgia. Journal of Marine Systems, 37(1–3), pp. 87-105. doi:10.1016/S0924-7963(02)00197-5
  30. Artamonov, Yu.V., Skripaleva, E.A. and Nikolsky, N.V., 2020. Spatial Structure and Intra- Annual Variability of Weddell Sea Front Based on the Data of NOAA OISST Reanalysis. Ecological Safety of Coastal and Shelf Zones of Sea, (4), pp. 89-102. doi:10.22449/2413-5577- 2020-4-89-102 (in Russian).
  31. Naumov, L.M. and Gordeeva, S.M., 2020. Lateral Heat and Salt Transports in the Lofoten Basin: Comparison Based on Three Databases. Fundamentalnaya i Prikladnaya Gidrofizika, 13(3), pp. 43-55. doi:10.7868/S207366732003003X (in Russian).
  32. Fomin, V.V., Panasenkova, I.I., Gusev, A.V., Chaplygin, A.V. and Diansky, N.A., 2021. Operational Forecasting System for Arctic Ocean Using the Russian Marine Circulation Model INMOM-Arctic. Arktika: Ekologiya i Ekonomika [Arctic: Ecology and Economy], 11(2), pp. 205-218. doi:10.25283/2223-4594-2021-2-205-218 (in Russian).
  33. Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S. and Schlax, M.G., 2007. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. Journal of Climate, 20(22), pp. 5473-5496. doi:10.1175/2007JCLI1824.1
  34. Niller, P.P., Amos, A. and Hu, J.-H., 1991. Water Masses and 200 m Relative Geostrophic Circulation in the Western Bransfield Strait Region. Deep Sea Research Part A: Oceanographic Research Papers, 38(8–9), pp. 943-959. doi:10.1016/0198-0149(91)90091-S
  35. Artamonov, Yu., Romanov, A., Vnucov, Yu., Perov, A. and Stepura, I., 2003. Results of the Oceanographycal Research at the Western Bransfield Strait during March 2002. Ukrainian Antarctic Journal, (1), pp. 7-16 (in Russian).
  36. Zhou, M., Zhu, Yi., Dorland, R.D. and Measures, C.I., 2010. Dynamics of the Current System in the Southern Drake Passage. Deep-Sea Research Part I: Oceanographic Research Papers, 57(9), pp. 1039-1048. doi:10.1016/j.dsr.2010.05.012

Download the article (PDF)