Ensembles of Hazardous Hydrometeorological Phenomena: Legal and Regulatory Aspects, Terminology and Classification (Review)

N. A. Yaitskaya1, 2, ✉, A. A. Magaeva2

1 Federal Research Center the Subtropical Scientific Center of the Russian Academy of Sciences, Sochi, Russian Federation

2 Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation

e-mail: yaitskayan@gmail.com

Abstract

Purpose. The paper is devoted to the analysis of the current state of research and achievements in the field of natural hazards and hydrometeorological phenomena and their ensembles (multi-hazards) from works published in specialized international and Russian scientific journals and monographs.

Methods and Results. Normative legal documents regulating the terminology in the field of hazardous and multi-hazardous natural and hydrometeorological phenomena, differences in the adopted terminology; existing classifications of multi-hazardous hydrometeorological phenomena, methods for performing such classifications, possible prospects for use, hazard threshold values and methods for their calculation; studies of multi-hazardous hydrometeorological phenomena based on the results of field observations and global reanalysis are considered in this article. Special attention is paid to the current stage of development of natural and exact sciences in Russia, contributing to the prevention and forecasting of dangerous hydrometeorological phenomena.

Conclusions. The increase in the recurrence of dangerous phenomena since the beginning of the XXI century, along with the development of information technologies, such as the creation of electronic databases, geoinformation systems, the use of satellite information and mathematical modeling made it possible to analyze, predict, evaluate and minimize (albeit to an incomplete extent) the consequences of manifestations of hazardous natural phenomena. It is shown that solving the problems of forecasting, monitoring, and minimizing the consequences of the occurrence of hazardous natural phenomena and their combinations requires interdisciplinary solutions and interaction with all stakeholders – society, government, science, and business. It is important to develop and implement plans for integrated management in regions that are particularly at risk. A big problem, in our opinion, is that in Russian and world science there is a large gap between fundamental research and decision-making bodies.

Keywords

natural hazards, storm, ice, floods, geographic information systems, mathematical modeling, reanalysis, decision support system, planning, risk management

Acknowledgements

The reported study was funded by RFBR, project number 20‑15-50320.

Original russian text

Original Russian Text © N. A. Yaitskaya, A. A. Magaeva, 2022, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 38, Iss. 3, pp. 256-275 (2022)

For citation

Yaitskaya, N.A. and Magaeva, A.A., 2022. Ensembles of Hazardous Hydrometeorological Phenomena: Legal and Regulatory Aspects, Terminology and Classification (Review). Physical Oceanography, 29(3), pp. 237-256. doi:10.22449/1573-160X-2022-3-237-256

DOI

10.22449/1573-160X-2022-3-237-256

References

  1. Bondur, V.G., Krapivin, V.F. and Savinykh, V.P., 2009. Monitoring and Forecasting of the Natural Disasters. Moscow: Scientific World Publishing House, 692 p. (in Russian).
  2. Easterling, D.R., Evans, J.L., Groisman, P.Ya., Karl, T.R., Kunkel, K.E. and Ambenje, P., 2000. Observed Variability and Trends in Extreme Climate Events: A Brief Review. Bulletin of the American Meteorological Society, 81(3), pp. 417-426. doi:10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2
  3. Bongaarts, J., 2009. Human Population Growth and the Demographic Transition. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1532), pp. 2985–2990. doi:10.1098/rstb.2009.0137
  4. Middleton, N.J. and Sternberg, T., 2013. Climate Hazards in Drylands: A Review. Earth-Science Reviews, 126, pp. 48-57. doi:10.1016/j.earscirev.2013.07.008
  5. Dilley, M., Chen, R.S., Deichmann, U., Lerner-Lam, A.L. and Arnold, M., 2005. Natural Disaster Hotspots: A Global Risk Analysis. Washington, DC: World Bank, 132 p. Available at: https://openknowledge.worldbank.org/handle/10986/7376 [Accessed: 19 April 2022].
  6. Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T. and Marcomini, A., 2016. A Review of Multi-Risk Methodologies for Natural Hazards: Consequences and Challenges for a Climate Change Impact Assessment. Journal of Environmental Management, 168, pp. 123-132. doi:10.1016/j.jenvman.2015.11.011
  7. Bell, R. and Glade, T., 2004. Multi-Hazard Analysis in Natural Risk Assessments. In: C. A. Brebbia, ed., 2004. Risk Analysis IV. WIT Transactions on Ecology and the Environment, Vol. 77. Ashurst, Southampton: WIT Press, pp. 197-206. doi:10.2495/RISK040181. Available at: https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/77/14298 [Accessed: 19 April 2022].
  8. Glade, T. and van Elverfeldt, K., 2005. MultiRISK: An Innovative Concept to Model Natural Risks. In: H. Oldrich, R. Fell, R. Coulture, E. Eberhardt, eds., 2005. Landslide Risk Management. London: CRC Press, pp. 561-566. doi:10.1201/9781439833711
  9. Simpson, A.L., Murnane, R.J., Saito, K., Phillips, E., Reid, R. and Himmelfarb, A., 2014. Understanding Risk in an Evolving world: Emerging Best Practices in Natural Disaster Risk Assessment. Washington, DC: World Bank, 224 p. Available at: https://openknowledge.worldbank.org/handle/10986/20682 [Accessed: 19 April 2022].
  10. Curt C., 2021. Multirisk: What Trends in Recent Works? – A Bibliometric Analysis. Science of the Total Environment, 763, 142951. doi:10.1016/j.scitotenv.2020.142951
  11. Komendantova, N., Mrzyglocki, R., Mignan, A., Khazai, B., Wenzel, F., Patt, A. and Fleming, K., 2014. Multi-Hazard and Multi-Risk Decision-Support Tools as a Part of Participatory Risk Governance: Feedback from Civil Protection Stakeholders. International Journal of Disaster Risk Reduction, 8, pp. 50-67. doi:10.1016/j.ijdrr.2013.12.006
  12. Monte, B.E.O., Goldenfum, J.A., Michel, G.P. and de Albuquerque Cavalcanti, J.R., 2021. Terminology of Natural Hazards and Disasters: A Review and the Case of Brazil. International Journal of Disaster Risk Reduction, 52, 101970. https://doi.org/10.1016/j.ijdrr.2020.101970
  13. Liu, B., Siu, Y. L. and Mitchell, G., 2016. Hazard Interaction Analysis for Multi-Hazard Risk Assessment: a Systematic Classification Based on Hazard-Forming Environment. Natural Hazards and Earth System Sciences, 16(2), pp. 629-642. https://doi.org/10.5194/nhess-16-629- 2016
  14. Elliott, M., Trono, A. and Cutts, N.D., 2010. Coastal Hazards and Risk. In: D. R. Green, 2010. Coastal Zone Management. Thomas Telford Publishing. Chapter 17, pp. 396-432. https://doi.org/10.1680/czm.35164.0017
  15. Jones, D., 1993. Environmental Hazards: The Challenge of Change: Environmental Hazards in the 1990s: Problems, Paradigms and Prospects. Geography, 78(2), pp. 161-165. Available at: https://www.jstor.org/stable/40572498 [Accessed: 01 May 2022].
  16. Mitchell, J.T. and Cutter, S.L., 1997. Global Change and Environmental Hazards: Is the World Becoming More Disastrous? Washington, D.C.: Association of American Geographers, 216 p.
  17. Below, R., Wirtz, A. and Guha-Sapir, D., 2009. Disaster Category Classification and Peril Terminology for Operational Purposes. Working Paper. Brussels: Centre for Research on the Epidemiology of Disasters, 20 p. Available at: https://cred.be/downloadFile.php?file=sites/default/files/DisCatClass_264.pdf [Accessed: 01 May 2022].
  18. Gill, J.C. and Malamud, B.D., 2014. Reviewing and Visualizing the Interactions of Natural Hazards. Reviews of Geophysics, 52(4), pp. 680-722. doi:10.1002/2013RG000445
  19. White, G.F., Kates, R.W. and Burton, I., 2001. Knowing Better and Losing Even More: The Use of Knowledge in Hazards Management. Global Environmental Change Part B: Environmental Hazards, 3(3-4), pp. 81-92. doi:10.1016/S1464-2867(01)00021-3
  20. Marzocchi, W., Garcia-Aristizabal, A., Gasparini, P., Mastellone, M.L. and Di Ruocco, A., 2012. Basic Principles of Multi-Risk Assessment: A Case Study in Italy. Natural Hazards, 62(2), pp. 551-573. doi:10.1007/s11069-012-0092-x
  21. Wipulanusat, W., Nakrod, S. and Prabnarong, P., 2009. Multi-Hazard Risk Assessment Using GIS and RS Applications: A Case Study of Pak Phanang Basin. Walailak Journal of Science and Technology, 6(1), pp. 109-125. Available at: https://wjst.wu.ac.th/index.php/wjst/article/view/76 [Accessed: 01 May 2022].
  22. Loat, R., 2010. Risk Management of Natural Hazards in Switzerland. Bern, 15 p. Available at: https://www.sistemaprotezionecivile.it/allegati/1149_Svizzera_Risk_Management [Accessed: 01 May 2022].
  23. Chiesa, C., Laben, C. and Cicone, R., 2003. An Asia Pacific Natural Hazards and Vulnerabilities Atlas. In: International Center for Remote Sensing of Environment, 2003. 30th International Symposium on Remote Sensing Of Environment, November 10-14, 2003, Honolulu, Hawaii. International Center for Remote Sensing of Environment, 2003.
  24. Jam, A.S., Mosaffaie, J., Sarfaraz, F., Shadfar, S. and Akhtari, R., 2021. GIS-Based Landslide Susceptibility Mapping Using Hybrid MCDM Models. Natural Hazards, 108(1), pp. 1025-1046. doi:10.1007/s11069-021-04718-5
  25. De Azevedo Reis, G., de Souza Filho, F.A., Nelson, D.R., Rocha, R.V. and da Silva, S.M.O., 2020. Development of a Drought Vulnerability Index Using MCDM and GIS: Study Case in São Paulo and Ceará, Brazil. Natural Hazards, 104(2), pp. 1781-1799. doi:10.1007/s11069- 020-04247-7
  26. Souissi, D., Zouhri, L., Hammami, S., Msaddek, M.H., Zghibi, A. and Dlala, M., 2020. GIS- Based MCDM – AHP Modeling for Flood Susceptibility Mapping of Arid Areas, Southeastern Tunisia. Geocarto International, 35(9), pp. 991-1017. doi: 10.1080/10106049.2019.1566405
  27. Tacnet, J., Carladous, S., Dezert, J., Han, D. and Batton-Hubert, M. 2017. New MCDM Methods under Uncertainty Applied to Integrated Natural Risks Management. In: IEEE, 2017. 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA). IEEE, pp. 193-198. doi:10.1109/CIVEMSA.2017.7995325
  28. Petrosyan, M.O., Zelenkov, P.V., Kovalev, I.V. and Efremova, S.V., 2016. Methods of Multicriteria Decision Analysis. In: Yu. Yu. Loginov, 2016. Reshetnev Readings. Krasnoyarsk. Part 2, pp. 76-77. Available at: https://disk.sibsau.ru/index.php/s/UGP7UcMvdmtYV7o [Accessed: 01 May 2022] (in Russian).
  29. Najafabadi, R.M., Ramesht, M.H., Ghazi, I., Khajedin, S.J., Seif, A., Nohegar, A. and Mahdavi, A., 2016. Identification of Natural Hazards and Classification of Urban Areas by TOPSIS Model (Case Study: Bandar Abbas City, Iran). Geomatics, Natural Hazards and Risk, 7(1), pp. 85-100. doi:10.1080/19475705.2013.871353
  30. Nyimbili, P.H., Erden, T. and Karaman, H, 2018. Integration of GIS, AHP and TOPSIS for Earthquake Hazard Analysis. Natural Hazards, 92(3), pp. 1523-1546. doi:10.1007/s11069- 018-3262-7
  31. Lee, G., Jun, K.-S. and Chung, E.-S., 2013. Integrated Multi-Criteria Flood Vulnerability Approach Using Fuzzy TOPSIS and Delphi Technique. Natural Hazards and Earth System Sciences, 13(5), pp. 1293-1312. doi:10.5194/nhess-13-1293-2013
  32. Lozoya, J.P., Sarda, R. and Jiménez, J.A., 2011. A Methodological Framework for Multi- Hazard Risk Assessment in Beaches. Environmental Science & Policy, 14(6), pp. 685-696. doi:10.1016/j.envsci.2011.05.002
  33. Safaripour, M. and Andabili, N.R., 2020. Miyandoab Flood Risk Mapping Using Dematel and SAW Methods and DPSIR Model. Advances in Environmental Technology, 6(3), pp. 131-138. doi: 10.22104/AET.2021.4766.1287
  34. Appelquist, L.R. and Halsnæs, K., 2015. The Coastal Hazard Wheel System for Coastal Multi- Hazard Assessment & Management in a Changing Climate. Journal of Coastal Conservation, 19(2), pp. 157-179. https://doi.org/10.1007/s11852-015-0379-7
  35. Micallef, S., Micallef, A. and Galdies, C, 2018. Application of the Coastal Hazard Wheel to Assess Erosion on the Maltese Coast. Ocean & Coastal Management, 156, pp. 209-222. doi:10.1016/j.ocecoaman.2017.06.005
  36. Stronkhorst, J., Levering, A., Hendriksen, G., Rangel-Buitrago, N. and Appelquist, L.R., 2018. Regional Coastal Erosion Assessment Based on Global Open Access Data: A Case Study for Colombia. Journal of Coastal Conservation, 22(4), pp. 787-798. doi:10.1007/s11852-018- 0609-x
  37. Baaghideh, M., Mayvaneh, F., Shekari Badi, A. and Shojaee, T., 2016. Evaluation of Human Thermal Comfort Using UTCI Index: Case Study Khorasan Razavi, Iran. Natural Environment Change, 2(2), pp. 165-175. Available at: https://jnec.ut.ac.ir/article_61007_263c37873764f267f74ad7af06cabf05.pdf [Accessed: 30 May 2022].
  38. Esmaili, R. and Montazeri, M., 2013. The Determine of the Mashad Bioclimatic Condition Base on Hourly Data. Geography and Environmental Planning, 24(1), pp. 215-230. Available at: https://gep.ui.ac.ir/article_18590.html?lang=en [Accessed: 25 May 2022].
  39. Yaglou, C.P. and Minard, D., 1957. Control of Heat Casualties at Military Training Centers. A.M.A. Archives of Industrial Health, 16(4), pp. 302-316. Available at: https://archive.org/details/sim_a-m-a-archives-of-industrial-health_1957- 10_16_4/page/316/mode/2up [Accessed: 25 May 2022].
  40. Peduzzi, P., Dao, H., Herold, C. and Mouton, F., 2009. Assessing Global Exposure and Vulnerability towards Natural Hazards: the Disaster Risk Index. Natural Hazards and Earth System Sciences, 9(4), pp. 1149-1159. doi:10.5194/nhess-9-1149-2009
  41. Norris, F.H., Stevens, S.P., Pfefferbaum, B., Wyche, K.F. and Pfefferbaum, R.L., 2008. Community Resilience as a Metaphor, Theory, Set of Capacities, and Strategy for Disaster Readiness. American Journal of Community Psychology, 41(1-2), pp. 127–150. doi:10.1007/s10464-007-9156-6
  42. Greiving, S., Fleischhauer, M. and Lückenkötter, J., 2006. A Methodology for an Integrated Risk Assessment of Spatially Relevant Hazards. Journal of Environmental Planning and Management, 49(1), pp. 1-19. doi:10.1080/09640560500372800
  43. Gaál, L., Szolgay, J., Kohnová, S., Parajka, J., Merz, R., Viglione, A. and Blöschl, G., 2012. Flood Timescales: Understanding the Interplay of Climate and Catchment Processes through Comparative Hydrology. Water Resources Research, 48(4), W04511. doi:10.1029/2011WR011509
  44. Voigt, S., Kemper, T., Riedlinger, T., Kiefl, R., Scholte, K. and Mehl, H., 2007. Satellite Image Analysis for Disaster and Crisis-Management Support. In: IEEE, 2007. IEEE Transactions on Geoscience and Remote Sensing, 45(6), pp. 1520-1528. doi: 10.1109/TGRS.2007.895830
  45. Joyce, K.E., Samsonov, S.V., Levick, S.R., Engelbrecht, J. and Beliss, S., 2014. Mapping and Monitoring Geological Hazards Using Optical, LiDAR, and Synthetic Aperture RADAR Image Data. Natural Hazards, 73(2), pp. 137-163. doi:10.1007/s11069-014-1122-7
  46. Kerle, N. and Oppenheimer, C., 2002. Satellite Remote Sensing as a Tool in Lahar Disaster Management. Disasters, 26(2), pp. 140-160. doi:10.1111/1467-7717.00197
  47. Tralli, D.M., Blom, R.G., Zlotnicki, V., Donnellan, A. and Evans, D.L., 2005. Satellite Remote Sensing of Earthquake, Volcano, Flood, Landslide and Coastal Inundation Hazards. ISPRS Journal of Photogrammetry and Remote Sensing, 59(4), pp. 185-198. doi:10.1016/j.isprsjprs.2005.02.002
  48. Manfré, L.A., Hirata, E., Silva, J.B., Shinohara, E.J., Giannotti, M.A., Larocca, A.P.C. and Quintanilha, J.A., 2012. An Analysis of Geospatial Technologies for Risk and Natural Disaster Management. ISPRS International Journal of Geo-Information, 1(2), pp. 166-185. doi:10.3390/ijgi1020166
  49. Montoya, L., 2003. Geo-Data Acquisition through Mobile GIS and Digital Video: An Urban Disaster Management Perspective. Environmental Modelling & Software, 18(10), pp. 869-876. doi:10.1016/S1364-8152(03)00105-1
  50. Zou, Q., 2017. Research on Cloud Computing for Disaster Monitoring Using Massive Remote Sensing Data. In: IEEE, 2017. IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, pp. 29-33. doi:10.1109/ICCCBDA.2017.7951879
  51. Böhm, K., Mehler-Bicher, A. and Fenchel, D., 2011. GeoVisualAnalytics in the Public Health Sector. In: IEEE, 2011. Proceedings 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services. IEEE, pp. 291-294. doi:10.1109/ICSDM.2011.5969049
  52. Huntington, J.L., Hegewisch, K.C., Daudert, B., Morton, C.G., Abatzoglou, J.T., McEvoy, D.J. and Erickson, T., 2017. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bulletin of the American Meteorological Society, 98(11), pp. 2397-2410. doi:10.1175/BAMS- D-15-00324.1

Download the article (PDF)