Processes Determining Synchronous Interdecadal Variability of Surface Temperature in the Barents and Black Seas

A. A. Sizov, T. M. Bayankina, V. L. Pososhkov, A. E. Anisimov

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: sizov_anatoliy@mail.ru

Abstract

Purpose. The work is devoted to considering the phase correspondence between the interdecadal variability of the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation indices, and their influence on the mechanism of synchronous formation of the surface temperature anomalies in the Barents and Black seas.

Methods and Results. The surface temperature anomaly values in the Barents and Black seas selected from the Hadley Centre for Climate Prediction and Research arrays, namely the sea ice and sea surface temperature data set, were used. To assess the atmospheric circulation in the Atlantic-European sector, the North Atlantic Oscillation and Atlantic Multidecadal Oscillation indices, as well as the position of the tropospheric frontal zone were applied. The correlation between the position of the tropospheric frontal zone and the values of the North Atlantic Oscillation index was analyzed using the initial series smoothed by a filter of a moving average, and spatial distribution of the surface temperature anomalies – by the composite maps. At the negative values of the Atlantic Multidecadal Oscillation (1950–1970), the processes characteristic of the negative values of the North Atlantic Oscillation index were predominant, whereas at the positive values of the Atlantic Multidecadal Oscillation index (1970–1990), the processes characteristic of the positive values of the North Atlantic Oscillation index prevailed.

Conclusions. The atmospheric circulation in the Atlantic-European sector constitutes the basic mechanism regulating the sea surface temperature anomalies in the North Atlantic, as well as in the Barents and Black seas. At the positive values of the North Atlantic Oscillation index, the sea surface temperature in the Barents Sea became higher, and that of the Black Sea – lower than the climate mean. At the negative values of the North Atlantic Oscillation index, the sea surface temperature in the Barents Sea became lower, and that of the Black Sea – higher relative to the climate mean.

Keywords

Barents Sea, Black Sea, surface temperature anomaly, Atlantic Multidecadal Oscillation, North Atlantic Oscillation

Acknowledgements

The work was carried out within the framework of the state assignment on theme No. 0555-2021-0002 “Fundamental research on the interaction processes in the ocean-atmosphere system determining regional spatial and temporal variability of the natural environment and climate”.

Original russian text

Original Russian Text © A. A. Sizov, T. M. Bayankina, V. L. Pososhkov, A. E. Anisimov, 2022, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 38, Iss. 3, pp. 276-290 (2022)

For citation

Sizov, A.A., Bayankina, T.M., Pososhkov, V.L. and Anisimov, A.E., 2022. Processes Determining Synchronous Interdecadal Variability of Surface Temperature in the Barents and Black Seas. Physical Oceanography, 29(3), pp. 257-270. doi:10.22449/1573-160X-2022-3-257-270

DOI

10.22449/1573-160X-2022-3-257-270

References

  1. Sorteberg, A., Kvamstø, N.G. and Byrkjedal, Ø., 2005. Wintertime Nordic Seas Cyclone Variability and Its Impact on Oceanic Volume Transports into the Nordic Seas. In: H. Drange, T. Dokken, T. Furevik, R. Gerdes and W. Berger, eds., 2005. The Nordic Seas: An Integrated Perspective. Washington, D.C.: American Geophysical Union, pp. 137-156. doi:10.1029/158GM10
  2. Hurrell, J.W. and Deser, C., 2009. North Atlantic Climate Variability: The Role of the North Atlantic Oscillation. Journal of Marine Systems, 78(1), pp. 28-41. doi:10.1016/j.jmarsys.2008.11.026
  3. Nesterov, E.S., 2013. [The North Atlantic Oscillation: Atmosphere and Ocean]. Moscow: Triada Ltd, 127 p. (in Russian).
  4. Alekseev, G.V., Ivanov, N.E., Pnushkov, A.V. and Balakin, A.A., 2011. Climate Changes in the Marine Arctic in the Early XXI Century. Problemy Arktiki i Antarktiki = Arctic and Antarctic Research, (3), pp. 22-34 (in Russian).
  5. Alekseev, G.V., Radionov, V.F., Aleksandrov, E.I., Ivanov, N.E. and Kharlanenkova, N.E., 2015. [Arctic Climate Change under Global Warming]. Problemy Arktiki i Antarktiki = Arctic and Antarctic Research, (1), pp. 32-41 (in Russian).
  6. Smirnov, A.V., Korablev, A.A. and Vyazilova, A.E., 2014. Seasonal and Interannual Variability of Water Thermohaline Properties in the Ows “Mike” Area. Problemy Arktiki i Antarktiki = Arctic and Antarctic Research, (2), pp. 25-32 (in Russian).
  7. Polyakov, I.V., Alekseev, G.V., Timokhov, L.A., Bhatt, U.S., Colony, R.L., Simmons, H.L., Walsh, D. and Walsh, J.E. and Zakharov, V.F., 2004. Variability of the Intermediate Atlantic Water of the Arctic Ocean over the Last 100 Years. Journal of Climate, 17(23), pp. 4485- 4497. doi:10.1175/JCLI-3224.1
  8. Dvoryaninov, G.S., Kubryakov, A.A., Sizov, A.A., Stanichny, S.V. and Shapiro, N.B., 2016. The North Atlantic Oscillation: A Dominant Factor in the Variations of Oceanic Circulation Systems of the Atlantic Ocean. Doklady Earth Sciences, 466(1), pp. 100-104. doi:10.1134/S1028334X16010207
  9. Mikhailova, N.V., Bayankina, T.M. and Sizov, A.A., 2021. Two Modes of Atmosphere– Ocean Interaction in the Atlantic Sector of the Arctic Basin. Oceanology, 61(4), pp. 443-449. doi:10.1134/S0001437021030097
  10. Enfield, D.B. and Cid-Serrano, L., 2010. Secular and Multidecadal Warmings in the North Atlantic and Their Relationships with Major Hurricane Activity. International Journal of Climatology, 30(2), pp. 174-184. doi:10.1002/joc.1881
  11. Yashayaev, I. and Seidov, D., 2015. The Role of the Atlantic Water in Multidecadal Ocean Variability in the Nordic and Barents Seas. Progress in Oceanography, 132, pp. 68-127. doi:10.1016/j.pocean.2014.11.009
  12. Semenov, V.A. and Cherenkova, E.A., 2018. Evaluation of the Atlantic Multidecadal Oscillation Impact on Large-Scale Atmospheric Circulation in the Atlantic Region in Summer. Doklady Earth Sciences, 478(2), pp. 263-267. doi:10.1134/S1028334X18020290
  13. Krasheninnikova, S.B. and Krasheninnikova, M.A., 2019. Causes and Features of Long-Term Variability of the Ice Extent of the Barents Sea. Ice and Snow, 59(1), pp. 112-122. doi:10.15356/2076-6734-2019-1-112-122 (in Russian).
  14. Sizov, A.A., Bayankin, T.M., Pososhkov, V.L. and Anisimov, A.E., 2021. Large-Scale Features of Synchronous Variability of the Winter Surface Temperature in the Barents and Black Seas. Doklady Earth Sciences, 501(1), pp. 989-993. https://doi.org/10.1134/S1028334X21110143 (in Russian).
  15. Carton, J.A., Cao, X., Giese, B.S. and Da Silva, A.M., 1996. Decadal and Interannual SST Variability in the Tropical Atlantic Ocean. Journal of Physical Oceanography, 26(7), pp. 1165-1175. doi:10.1175/1520-0485(1996)026<1165:DAISVI>2.0.CO;2
  16. Xie, S.-P. and Tanimoto, Y., 1998. A Pan-Atlantic Decadal Climate Oscillation. Geophysical Research Letters, 25(12), pp. 2185-2188. doi:10.1029/98GL01525
  17. Sizov, A.A. and Chekhlan, A.E., 2010. Anomalies of Hydrometeorological Fields in the Black Sea Area Associated with Sea Surface Temperature Gradients in the North Atlantic. Russian Meteorology and Hydrology, 35(7), pp. 476-482. doi:10.3103/S1068373910070071
  18. Breeden, M.L. and McKinley, G.A., 2016. Climate Impacts on Multidecadal pCO2 Variability in the North Atlantic: 1948–2009. Biogeosciences, 13(11), pp. 3387-3396. doi:10.5194/bg-13-3387-2016
  19. Serykh, I.V., 2016. Influence of the North Atlantic Dipole on Climate Changes over Eurasia. In: TSU, 2016. IOP Conference Series: Earth and Environmental Science. Tomsk: IOP Publishing Ltd. Vol. 48, 012004. doi:10.1088/1755-1315/48/1/012004
  20. Zolotokrylin, A.N., Mikhaylov, A.Yu. and Titkova, T.B., 2015. Effect of Warm Atlantic Waters on the Climate Anomalies in the West Arctic. Ice and Snow, 55(3), pp. 73-82 (in Russian).
  21. Artamonov, Yu.V., Skripaleva, E.A. and Fedirko, A.V., 2020. Regional Features of the Temperature Field Synoptic Variability on the Black Sea Surface from Satellite Data. Physical Oceanography, 27(2), pp. 186-196. doi:10.22449/1573-160X-2020-2-186-196
  22. Semenov, E.K., Sokolikhina, N.N. and Sokolikhina, E.V., 2013. Meteorological and Synoptic Aspects of the Formation and Evolution of the Novorossiysk Bora. Russian Meteorology and Hydrology, 38(10), pp. 661-668. doi:10.3103/S1068373913100026
  23. Semenov, E.K., Sokolikhina, N.N. and Tudrii, K.O., 2013. The Warm Winter in the Russian Arctic and Anomalous Cold in Europe. Russian Meteorology and Hydrology, 38(9), pp. 614- 621. doi:10.3103/S1068373913090045

Download the article (PDF)