Temporal Variability of Aerosol Wet Deposition Velocity in the Sevastopol Region: Observational Data

D. A. Kremenchutskii

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: d.kremenchutskii@mhi-ras.ru

Abstract

Purpose. The study is purposed at identifying both the features of seasonal and interannual variability of the aerosol wet deposition velocity and the factors that determine this variability on the time scales under study.

Methods and Results. The deposition velocity in 2012–2020 was estimated using the field data on temporal variability of the 7Be concentration on atmospheric aerosols and the 7Be “wet” deposition fluxes. The correlation analysis permitted to assess quantitatively the influence of the precipitation amount and frequency upon the seasonal and interannual variability of the deposition velocity. The multiple regression analysis was applied for constructing the regression models.

Conclusions. The deposition velocity varies from 0.21 to 1.40 cm·s–1 and averages 0.62 ± 0.29 cm·s–1. It has been established that its seasonal variability is conditioned by the amount and frequency of precipitation, whereas its interannual variability – only by the precipitation amount. Based on the obtained results, two regression models were been proposed. The first model describes seasonal variability of the deposition velocity, while the second one – the interannual variability of this parameter. The corresponding time series of precipitation variability data are used in both models as predictors. The validation results indicate that the errors in the obtained estimates constitute 21.1 and 12.9% for the seasonal and annual values of wet deposition velocity, respectively.

Keywords

Beryllium-7 (7Be), precipitation, wet deposition velocity, atmospheric aerosol, wet deposition flux

Acknowledgements

The author thanks PhD (phys.-math.) Gennady F. Batrakov for the comments. The key technical laboratory assistance was provided by Alla P. Arbuzova and Tamara М. Ivanova. The data for the study were obtained within the framework of state assignment of the Ministry of Science and Higher Education of Russian Federation (No. 0555-2021-0005). The data were analyzed within the framework of the Russian Science Foundation grant No. 20-77-00024.

Original russian text

Original Russian Text © D. A. Kremenchutskii, 2022, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 38, Iss. 4, pp. 345-357 (2022)

For citation

Kremenchutskii, D.A., 2022. Temporal Variability of Aerosol Wet Deposition Velocity in the Sevastopol Region: Observational Data. Physical Oceanography, 29(4), pp. 321-333. doi:10.22449/1573-160X-2022-4-321-333

DOI

10.22449/1573-160X-2022-4-321-333

References

  1. Varenik, A.V., Kalinskaya, D.V. and Myslina, M.A., 2021. Investigation of Airborne Particulate Matter in the Atmosphere of the Black Sea Coastal Zone Based on the Measured and Satellite Data. Physical Oceanography, 28(3), pp. 326-337. doi:10.22449/1573-160X- 2021-3-326-337
  2. Prospero, J.M., 1996. Saharan Dust Transport over the North Atlantic Ocean and Mediterranean: An Overview. In: S. Guerzoni and R. Chester (Eds.), 1996. The Impact of Desert Dust across the Mediterranean. Environmental Science and Technology Library. Dordrecht: Springer. Vol. 11, pp. 133-151. doi:10.1007/978-94-017-3354-0_13
  3. Prospero, J.M., 2002. The Chemical and Physical Properties of Marine Aerosols: An Introduction. In: A. Gianguzza, E. Pelizzetti and S. Sammartano (Eds.), 2002. Chemistry of Marine Water and Sediments. Environmental Science. Berlin, Heidelberg: Springer, pp. 35- 82. doi:10.1007/978-3-662-04935-8_2
  4. Kremenchutskii, D.A., Dymova, O.A., Batrakov, G.F. and Konovalov, S.K., 2018. Numerical Simulation of the Intra-Annual Evolution of Beryllium-7 (7Ве) in the Surface Layer of the Black Sea. Environmental Science and Pollution Research, 25(11), pp. 11120-11127. doi:10.1007/s11356-018-1269-y
  5. Kremenchutskii, D.A., Batrakov, G.F., Dovhyi, I.I. and Sapozhnikov, Y.A., 2021. Role of Suspended Matter in Controlling Beryllium-7 (7Be) in the Black Sea Surface Layer. Journal of Marine Systems, 217, 103513. doi:10.1016/j.jmarsys.2021.103513
  6. Kadko, D., Landing, W.M. and Buck, C.S., 2020. Quantifying Atmospheric Trace Element Deposition over the Ocean on a Global Scale with Satellite Rainfall Products. Geophysical Research Letters, 47(7), e2019GL086357. doi:10.1029/2019GL086357
  7. Varenik, A.V., 2020. Influence of Emissions from the Stationary Heat Sources upon the Atmospheric Precipitation Pollution with Inorganic Nitrogen in the Sevastopol Region. Physical Oceanography, 27(3), pp. 257-265. doi:10.22449/1573-160X-2020-3-257-265
  8. Varenik, A.V. and Konovalov, S.K., 2021. Variations in Concentrations and Ratio of Soluble Forms of Nutrients in Atmospheric Depositions and Effects for Marine Coastal Areas of Crimea, Black Sea. Applied Sciences, 11(23), 11509. doi:10.3390/app112311509
  9. Moore, C.M., Mills, M.M., Achterberg, E.P., Geider, R.J., LaRoche, J., Lucas, M.I., McDonagh, E.L., Pan, X., Poulton, A.J. [et al.], 2009. Large‐Scale Distribution of Atlantic Nitrogen Fixation Controlled by Iron Availability. Nature Geoscience, 2, pp. 867-871. doi:10.1038/ngeo667
  10. Okin, G.S., Baker, A.R., Tegen, I., Mahowald, N.M., Dentener, F.J., Duce, R.A., Galloway, J.N., Hunter, K., Kanakidou, M. [et al.], 2011. Impacts of Atmospheric Nutrient Deposition on Marine Productivity: Roles of Nitrogen, Phosphorus, and Iron. Global Biogeochemical Cycles, 25(2), GB2022. doi:10.1029/2010GB003858
  11. Baker, A.R. and Jickells, T.D., 2017. Atmospheric Deposition of Soluble Trace Elements along the Atlantic Meridional Transect (AMT). Progress in Oceanography, 158, pp. 41-51. doi:10.1016/j.pocean.2016.10.002
  12. Varenik, A.V., Kozlovskaya, O.N. and Simonova, Yu.V., 2016. Estimation of Nutrient Flux Input to the Crimean Southern Coast (Katsiveli) Supplied by the Atmospheric Precipitation in 2010–2015. Physical Oceanography, (5), pp. 61-70. doi:10.22449/1573-160X-2016-5-61-70
  13. Varenik, A.V. and Kalinskaya, D.V., 2021. The Effect of Dust Transport on the Concentration of Chlorophyll-A in the Surface Layer of the Black Sea. Applied Sciences, 11(10), 4692. doi:10.3390/app11104692
  14. Morel, F.M.M., Milligan, A.J. and Saito, M.A., 2003. 6.05 – Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients. In: H. D. Holland, K. K. Turekian (Eds.), 2003. Treatise on Geochemistry. Oxford: Pergamon, pp. 113-143. doi:10.1016/B0-08-043751-6/06108-9
  15. Morel, F.M.M. and Price, N.M., 2003. The Biogeochemical Cycles of Trace Metals in the Oceans. Science, 300(5621), pp. 944-947. doi:10.1126/science.1083545
  16. Zhang, F., Wang, J., Baskaran, M., Zhong, Q., Wang, Y., Paatero, J. and Du, J., 2021. A Global Dataset of Atmospheric 7Be and 210Pb Measurements: Annual Air Concentration and Depositional Flux. Earth System Science Data, 13(6), pp. 2963-2994. doi:10.5194/essd- 13-2963-2021
  17. Ioannidou, A., 2012. 7Be Aerosols and Their Deposition on the Sea: A Possible Method to Estimate Trace Metals Deposition on the Sea. Journal of Environmental Radioactivity, 108, pp. 29-32. doi:10.1016/j.jenvrad.2011.11.012
  18. Kremenchutskii, D.A., 2021. Influence of Precipitation on the Daily Beryllium-7 (7Be) Activity Concentration in the Atmospheric Surface Layer. Journal of Environmental Radioactivity, 237, 106722. doi:10.1016/j.jenvrad.2021.106722
  19. Chham, E., Piñero-García, F., Brattich, E., El Bardouni, T. and Ferro-García, M.A., 2018. 7Be Spatial and Temporal Pattern in Southwest of Europe (Spain): Evaluation of a Predictive Model. Chemosphere, 205, pp. 194-202. doi:10.1016/j.chemosphere.2018.04.099
  20. Alegría, N., Hernández-Ceballos, M.Á., Herranz, M., Idoeta, R. and Legarda, F., 2020. Meteorological Factors Controlling 7Be Activity Concentrations in the Atmospheric Surface Layer in Northern Spain. Atmosphere, 11(12), 1340. doi:10.3390/atmos11121340
  21. Baskaran, M., Coleman, C.H. and Santschi, P.H., 1993. Atmospheric Depositional Fluxes of 7Be and 210Pb at Galveston and College Station, Texas. Journal of Geophysical Research: Atmospheres, 98(D11), pp. 20555-20571. doi:10.1029/93JD02182
  22. Othman, I., Al-Masri, M.S. and Hassan, M., 1998. Fallout of 7Be in Damascus City. Journal of Radioanalytical and Nuclear Chemistry, 238(1–2), pp. 187-192. doi:10.1007/BF02385379
  23. Fogh, C.L., Roed, J. and Andersson, K.G., 1999. Radionuclide Resuspension and Mixed Deposition at Different Heights. Journal of Environmental Radioactivity, 46(1), pp. 67-75. doi:10.1016/S0265-931X(98)00130-1
  24. Ioannidou, A. and Papastefanou, C., 2006. Precipitation Scavenging of 7Be and 137Cs Radionuclides in Air. Journal of Environmental Radioactivity, 85(1), pp. 121-136. doi:10.1016/j.jenvrad.2005.06.005
  25. Saleh, I.H. and Abdel-Halim, A.A., 2017. 7Be in Soil, Deposited Dust and Atmospheric Air and Its Using to Infer Soil Erosion along Alexandria Region, Egypt. Journal of Environmental Radioactivity, 172, pp. 24-29. doi:10.1016/j.jenvrad.2017.03.005
  26. Bas, M.C., Ortiz, J., Ballesteros, L. and Martorell, S., 2016. Analysis of the Influence of Solar Activity and Atmospheric Factors on 7Be Air Concentration by Seasonal-Trend Decomposition. Atmospheric Environment, 145, pp. 147-157. doi:10.1016/j.atmosenv.2016.09.027
  27. Pinero-García, F. and Ferro-García, M.A., 2013. Evolution and Solar Modulation of 7Be during the Solar Cycle 23. Journal of Radioanalytical and Nuclear Chemistry, 296(3), pp. 1193-1204. doi:10.1007/s10967-012-2373-y
  28. Hernández-Ceballos, M.A., Cinelli, G., Marín Ferrer, M., Tollefsen, T., De Felice, L., Nweke, E., Tognoli, P.V., Vanzo, S. and De Cort, M., 2015. A Climatology of 7Be in Surface Air in European Union. Journal of Environmental Radioactivity, 141, pp. 62-70. doi:10.1016/j.jenvrad.2014.12.003
  29. Doering, C. and Akber, R., 2008. Beryllium-7 in Near-Surface Air and Deposition at Brisbane, Australia. Journal of Environmental Radioactivity, 99(3), pp. 461-467. doi:10.1016/j.jenvrad.2007.08.017
  30. Lozano, R.L., San Miguel, E.G., Bolivar, J.P. and Baskaran, M., 2011. Depositional Fluxes and Concentrations of 7Be and 210Pb in Bulk Precipitation and Aerosols at the Interface of Atlantic and Mediterranean Coasts in Spain. Journal of Geophysical Research: Atmospheres, 116(D18), D18213. doi:10.1029/2011JD015675

Download the article (PDF)