Representing the Indian Ocean Dipole
M. R. Jury1, 2
1 University of Zululand, KwaDlangezwa, South Africa
2 University of Puerto Rico Mayaguez, Puerto Rico, USA
e-mail: mark.jury@upr.edu
Abstract
Purpose. This paper offers an alternative representation of the Indian Ocean Dipole. Instead of the zonal gradient of equatorial sea surface temperature, the new index uses tropical sub-surface temperatures (T100).
Methods and Results. The space-time character of the new index is defined by empirical orthogonal function analysis in the domain 20°S–5°N, 35°–120°E. The spatial pattern reflects an inherent zonal dipole with a temporal score that correlates with atmospheric empirical orthogonal function modes that describe the Walker circulation and basin-scale convection. Statistical regressions are conducted in the period 1979–2019 to evaluate the traditional Dipole Mode Index and the new T100 index, and the association with East Africa climate and Pacific Nino3.4 SST. These demonstrate improved performance of the T100 index with ~ 30% higher r2 explained variance.
Conclusions. Whereas the old index tracks feedback between equatorial sea surface temperature / zonal wind / surface fluxes, the new index tracks coupling between south Indian Ocean Rossby waves / anticyclonic curl / thermocline oscillations.
Keywords
Indian Ocean, dipole, subsurface representation, tropical sub-surface temperatures, anticyclonic curl, thermocline oscillation
Acknowledgements
Datasets and EOF analyses based on NOAA and ECMWF derive from websites of the IRI Climate Library and KNMI Climate Explorer (CE). The author recognizes on-going support from the South African Department of Education. The T100 dataset is called from the (CE) menu listing ‘ocean mean temperature…NODC’.
For citation
Jury, M.R., 2022. Representing the Indian Ocean Dipole. Physical Oceanography, 29(4), pp. 417-432. doi:10.22449/1573-160X-2022-4-417-432
DOI
10.22449/1573-160X-2022-4-417-432
References
- Masumoto, Y. and Meyers, G., 1998. Forced Rossby Waves in the Southern Tropical Indian Ocean. Journal of Geophysical Research: Oceans, 103(C12), pp. 27589-27602. doi:10.1029/98JC02546
- Klein, S.A., Soden, B.J. and Lau N., 1999. Remote Sea Surface Temperature Variations During ENSO: Evidence for a Tropical Atmospheric Bridge. Journal of Climate, 12(4), pp. 917-932. doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2
- Reppin, J., Schott, F.A., Fischer, J. and Quadfasel, D., 1999. Equatorial Currents and Transports in the Upper Central Indian Ocean: Annual Cycle and Interannual Variability. Journal of Geophysical Research: Oceans, 104(C7), pp. 15495-15514. doi:10.1029/1999JC900093
- Saji, N.H., Goswami, B.N., Vinayachandran, P.N. and Yamagata, T., 1999. A Dipole Mode in the Tropical Indian Ocean. Nature, 401, pp. 360-363. doi:10.1038/43854
- Webster, P.J., Moore, A.M., Loschingg, J.P. and Leben, R.R., 1999. Coupled Ocean- Atmosphere Dynamics in the Indian Ocean During 1997-98. Nature, 401, pp. 356-360. doi:10.1038/43848
- Sengupta, D., Senan, R. and Goswami, B.N., 2001. Origin of Intraseasonal Variability of Circulation in the Tropical Central Indian Ocean. Geophysical Research Letters, 28(7), pp. 1267-1270. doi:10.1029/2000GL012251
- Rao, S.A., Behera, S.K., Masumoto, Y. and Yamagata, T., 2002. Interannual Subsurface Variability in the Tropical Indian Ocean with a Special Emphasis on the Indian Ocean Dipole. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(7–8), pp. 1549-1572. https://doi.org/10.1016/S0967-0645(01)00158-8
- Behera, S.K., Luo, J.J., Masson, S., Rao, S.A., Sakuma, H. and Yamagata, T., 2006. A CGCM Study on the Interaction between IOD and ENSO. Journal of Climate, 19(9), pp. 1688-1705. doi:10.1175/JCLI3797.1
- Yeshanew, A. and Jury, M.R., 2007. North African Climate Variability. Part 1: Tropical Thermocline Coupling. Theoretical and Applied Climatology, 89(1–2), pp. 25-36. doi:10.1007/S00704-006-0242-8
- Izumo, T., Vialard, J., Lengaigne, M., de Boyer Montégut, C., Behera, S.K., Luo, J.-J., Cravatte, S., Masson, S. and Yamagata, T., 2010. Influence of the State of the Indian Ocean Dipole on the Following Year's El Niño. Nature Geoscience, 3, pp. 168-172. doi:10.1038/NGEO760
- Luo, J., Zhang, R., Behera, S.K., Masumoto, Y., Jin, F., Lukas, R. and Yamagata, T., 2010. Interaction between El Niño and Extreme Indian Ocean Dipole. Journal of Climate, 23(3), pp. 726-742. doi:10.1175/2009JCLI3104.1
- Halkides, D. and Lee, T., 2011. Mechanisms Controlling Seasonal Mixed Layer Temperature and Salinity in the Southwestern Tropical Indian Ocean. Dynamics of Atmospheres and Oceans, 51(3), pp. 77-93. doi:10.1016/J.DYNATMOCE.2011.03.002
- Yokoi, T., Tozuka, T. and Yamagata, T., 2012. Seasonal and Interannual Variations of the SST above the Seychelles Dome. Journal of Climate, 25(2), pp. 800-814. doi:10.1175/JCLI- D-10-05001.1
- Chambers, D.P., Tapley, B.D. and Stewart, R.H., 1999. Anomalous Warming in the Indian Ocean Coincident with El Niño. Journal of Geophysical Research: Oceans, 104(C2), pp. 3035-3047. doi:10.1029/1998JC900085
- Murtugudde, R. and Busalacchi, A.J., 1999. Interannual Variability of the Dynamics and Thermodynamics of the Tropical Indian Ocean. Journal of Climate, 12(8), pp. 2300-2326. doi:10.1175/1520-0442(1999)012<2300:IVOTDA>2.0.CO;2
- White, W.B., 2000. Coupled Rossby Waves in the Indian Ocean on Interannual Timescales. Journal of Physical Oceanography, 30(11), pp. 2972-2988. doi:10.1175/1520- 0485(2001)031<2972:CRWITI>2.0.CO;2
- Trenary, L.L. and Han, W., 2012. Intraseasonal-to-Interannual Variability of South Indian Ocean Sea Level and Thermocline: Remote versus Local Forcing. Journal of Physical Oceanography, 42(4), pp. 602-627. doi:10.1175/JPO-D-11-084.1
- Tozuka, T., Nagura, M. and Yamagata, T., 2014. Influence of the Reflected Rossby Waves on the Western Arabian Sea Upwelling Region. Journal of Physical Oceanography, 44(5), pp. 1424-1438. https://doi.org/10.1175/JPO-D-13-0127.1
- Jury, M.R., 2018. South Indian Ocean Rossby Waves. Atmosphere-Ocean, 56(5), pp. 322- 331. doi:10.1080/07055900.2018.1544882
- McCreary Jr., J.P., Kundu, P.K. and Molinari, R.L., 1993. A Numerical Investigation of Dynamics, Thermodynamics and Mixed-Layer Processes in the Indian Ocean. Progress in Oceanography, 31(3), pp. 181-244. doi:10.1016/0079-6611(93)90002-U
- Xie, S., Annamalai, H., Schott, F.A. and McCreary Jr., J.P., 2002. Structure and Mechanisms of South Indian Ocean Climate Variability. Journal of Climate, 15(8), pp. 864-878. doi:10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2
- Huang, B. and Kinter III, J.L., 2002. Interannual Variability in the Tropical Indian Ocean. Journal of Geophysical Research: Oceans, 107(C11), 3199. doi:10.1029/2001JC001278
- Yamagata, T., Behera, S.K., Luo, J-J., Masson, S., Jury, M.R. and Rao, S.A., 2003. Coupled Ocean-Atmosphere Variability in the Tropical Indian Ocean. In: C. Wang, S. Xie and J. Carton, eds., 2003. Earth's Climate: The Ocean-Atmosphere Interaction. Geophysical Monograph Series, 147. Washington, DC: AGU, pp. 189-212. doi:10.1029/147GM12
- Jury, M.R. and Huang, B., 2004. The Rossby Wave as a Key Mechanism of Indian Ocean Climate Variability. Deep-Sea Research Part I: Oceanographic Research Papers, 51(12), pp. 2123-2136. doi:10.1016/J.DSR.2004.06.005
- Wolfe, C.L., Cessi, P. and Cornuelle, B.D., 2017. An Intrinsic Mode of Interannual Variability in the Indian Ocean. Journal of Physical Oceanography, 47(3), pp. 701-719. doi:10.1175/JPO-D-16-0177.1
- Jury, M.R., 2019. Global Wave-2 Structure of El Niño–Southern Oscillation-Modulated Convection. International Journal of Climatology, 39(4), pp. 2438-2448. doi:10.1002/joc.5963
- Nagura, M. and McPhaden, M.J., 2010. Dynamics of Zonal Current Variations Associated with the Indian Ocean Dipole. Journal of Geophysical Research: Oceans, 115(C11), C11026. doi:10.1029/2010JC006423
- Shinoda, T, Hendon, H.H. and Alexander, M.A., 2004. Surface and Subsurface Dipole Variability in the Indian Ocean and Its Relation with ENSO. Deep-Sea Research Part I: Oceanographic Research Papers, 51(5), pp. 619-635. doi:10.1016/J.DSR.2004.01.005
- Chakravorty, S., Gnanaseelan, C., Chowdary, J.S. and Luo, J.-J., 2014. Relative Role of El Niño and IOD Forcing on the Southern Tropical Indian Ocean Rossby Waves. Journal of Geophysical Research: Oceans, 119(8), pp. 5105-5122. https://doi.org/10.1002/2013JC009713
- Sayantani, O. and Gnanaseelan, C., 2015. Tropical Indian Ocean Subsurface Temperature Variability and the Forcing Mechanisms. Climate Dynamics, 44(9–10), pp. 2447-2462. https://doi.org/10.1007/s00382-014-2379-y
- Deepa, J.S., Gnanaseelan, C., Kakatkar, R., Parekh, A. and Chowdary, J.S., 2018. The Interannual Sea Level Variability in the Indian Ocean as Simulated by an Ocean General Circulation Model. International Journal of Climatology, 38(3), pp. 1132-1144. doi:10.1002/joc.5228
- Levitus, S., Antonov, J.I., Boyer, T.P., Baranova, O.K., Garcia, H.E., Locarnini, R.A., Mishonov, A.V., Reagan, J.R., Seidov, D., Yarosh, E.S. and Zweng, M.M., 2012. World Ocean Heat Content and Thermosteric Sea Level Change (0–2000 m) 1955–2010. Geophysical Research Letters, 39(10), L10603. doi:10.1029/2012GL051106
- Behringer, D.W., 2007. The Global Ocean Data Assimilation System At NCEP. In: AMS, 2007. 11th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS). January 2007, San Antonio, TX, 3.3. Available at: https://ams.confex.com/ams/87ANNUAL/webprogram/Paper119541.html [Accessed: 18 June 2022].
- Carton, J.A., Chepurin, G.A. and Chen, L., 2018. SODA-3: A New Ocean Climate Reanalysis. Journal of Climate, 31(17), pp. 6967-6983. doi:10.1175/JCLI-D-18-0149.1
- Legeais, J.-F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J.A., Scharffenberg, M.G., Fenoglio-Marc, L., Fernandes, M.J., Andersen, O.B. [et al.], 2018. An Improved and Homogeneous Altimeter Sea Level Record from the ESA Climate Change Initiative. Earth System Science Data, 10(1), pp. 281-301. doi:10.5194/ESSD-10-281-2018
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R. [et al.], 2020. The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), pp. 1999-2049. doi:10.1002/qj.3803
- Lee, H-T., 2014. Outgoing Longwave Radiation – Daily - Climate Algorithm Theoretical Basis Document. NOAA’s Climate Data Record Program CDRP-ATBD-0526. NOAA, 46 p. Available at http://www.ncdc.noaa.gov/cdr/operationalcdrs.html [Accessed: 18 June 2022].
- Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., [et. al.], 2015. The Climate Hazards Infrared Precipitation with Stations – A New Environmental Record for Monitoring Extremes. Scientific Data, 2(1), 150066. doi:10.1038/sdata.2015.66
- Pinzon, J.E. and Tucker, C.J., 2014. A Non-Stationary 1981-2012 AVHRR NDVI3g Time Series. Remote Sensing, 6(8), pp. 6929-6960. doi:10.3390/rs6086929
- Cleveland, W.S. and Devlin, S.J., 1988. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association, 83(403), pp. 596-610. doi:10.1080/01621459.1988.10478639
- Kakatkar, R., Gnanaseelan, C. and Chowdary, J.S., 2020. Asymmetry in the Tropical Indian Ocean Subsurface Temperature Variability. Dynamics of Atmospheres and Oceans, 90, 101142. doi:10.1016/j.dynatmoce.2020.101142
- Roxy, M.K., Gnanaseelan, C., Parekh, A., Chowdary, J.S., Singh, S., Modi, A., Kakatkar, A., Mohapatra, S., Dhara, C., Shenoi, S.C. and Rajeevan, M., 2020. Indian Ocean Warming. In: R. Krishnan, J. Sanjay, C. Gnanaseelan, M. Mujumdar, A. Kulkarni, S. Chakraborty, eds., 2020. Assessment of Climate Change over the Indian Region. Singapore: Springer, pp. 191- 206. doi:10.1007/978-981-15-4327-2_10
- Saji, N.H., Xie, S.-P. and Yamagata, T., 2006. Tropical Indian Ocean Variability in the IPCC Twentieth-Century Climate Simulations. Journal of Climate, 19(17), pp. 4397-4417. doi:10.1175/JCLI3847.1
- Torrence, C. and Compo, G.P., 1998. A Practical Guide to Wavelet Analysis. Bulletin of American Meteorological Society, 79(1), pp. 61-78. doi:10.1175/1520- 0477(1998)079<0061:APGTWA>2.0.CO;2
- Bretherton, C.S., Widmann, M., Dymnikov, V.P., Wallace, J.M. and Blade, I., 1999. The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. Journal of Climate, 12(7), pp. 1990-2009. doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
- Dima, M. and Lohmann, G., 2004. Fundamental and Derived Modes of Climate Variability: Concept and Application to Interannual Time-Scales. Tellus A: Dynamic Meteorology and Oceanography, 56(3), pp. 229-249. doi:10.1111/J.1600-0870.2004.00059.X
- Blau, M.T. and Ha, K-J., 2020. The Indian Ocean Dipole and Its Impact on East African Short Rains in Two CMIP5 Historical Scenarios with and without Anthropogenic Influence. Journal of Geophysical Research: Atmospheres, 125(16), e2020JD033121. doi:10.1029/2020jd033121
- Fischer, A.S., Terray, P., Guilyardi, E., Gualdi, S. and Delécluse, P., 2005. Two Independent Triggers for the Indian Ocean Dipole/Zonal Mode in a Coupled GCM. Journal of Climate, 18(17), pp. 3428-3449. doi:10.1175/JCLI3478.1
- Behera, S.K., Luo, J., Masson, S., Delecluse, P., Gualdi, S., Navarra, A. and Yamagata, T., 2005. Paramount Impact of the Indian Ocean Dipole on the East African Short Rains: A CGCM Study. Journal of Climate, 18(21), pp. 4514-4530. doi:10.1175/JCLI3541.1
- Nicholson, S.E., 2015. Long-Term Variability of the East African ‘Short Rains’ and Its Links to Large-Scale Factors. International Journal of Climatology, 35(13), pp. 3979-3990. doi:10.1002/joc.4259
- McIntosh, P.C. and Hendon, H.H., 2018. Understanding Rossby Wave Trains Forced by the Indian Ocean Dipole. Climate Dynamics, 50(7–8), pp. 2783-2798. doi:10.1007/s00382-017- 3771-1
- Bracco, A., Kucharski, F., Molteni, F., Hazeleger, W. and Severijns, C., 2005. Internal and Forced Modes of Variability in the Indian Ocean. Geophysical Research Letters, 32(12), L12707. doi:10.1029/2005GL023154
- Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S. and Schlax, M.G., 2007. Daily High-Resolution Blended Analyses for Sea Surface Temperature. Journal of Climate, 20(22), pp. 5473-5496. doi:10.1175/2007JCLI1824.1
- Rao, S.A. and Behera, S.K., 2005. Subsurface Influence on SST in the Tropical Indian Ocean: Structure and Interannual Variability. Dynamics of Atmospheres and Oceans, 39(1–2), pp. 103-135. doi:10.1016/J.DYNATMOCE.2004.10.014
- Tozuka, T., Yokoi, T. and Yamagata, T., 2010. A Modeling Study of Interannual Variations of the Seychelles Dome. Journal of Geophysical Research: Oceans, 115(C4), C04005. doi:10.1029/2009JC005547