Evolution of Submesoscale Cyclones on the Batumi Anticyclone Periphery Based on the Numerical Simulation Data

A. A. Bogdanov, A. I. Mizyuk, A. A. Kubryakov

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: artem96.96@bk.ru

Abstract

Purpose. The paper is purposed at studying the characteristics and evolution of submesoscale cyclonic eddies attached to the Batumi anticyclone.

Methods and Results. The results of numerical simulation based on the NEMO model data for 2008–2009 and on the algorithm for automatic eddy identification, permitted to obtain the data on evolution of the dynamic and thermohaline structure of such eddies, and the reasons for their formation and dissipation. When in 2008 the Batumi anticyclone was passing, seven pronounced stable submesoscale rounded cyclonic eddies were detected on its periphery. The lifetime of some eddies achieves 20 days, vorticity anomalies in them can reach the 200 m depth, and vertical velocities can exceed 10 m/day.

Conclusions. The submesoscale cyclonic eddies are formed at intensification of the Batumi anticyclone and at its displacement to the west towards Cape Fener. Increase of velocity shear arising during interaction of the Batumi anticyclone with the cape, results in formation of the cyclonic vorticity area which in some cases transforms into a submesoscale cyclonic eddy. Further, such eddies separate from the coast and move along the Batumi anticyclone periphery in the anticyclonic direction. The highest energy of submesoscale cyclonic eddies is observed at the moment of their formation, and then follows their slow dissipation, that is related to the process of their elongation due to the velocity shear at the Batumi anticyclone periphery. This process gradually intensifies with weakening of a cyclonic vortex and results in its transformation into a vortex filament.

Keywords

Black Sea, numerical modeling, NEMO, Batumi anticyclone, submesoscale cyclonic eddies, eddy, anticyclone

Acknowledgements

The evolution and dissipation processes of submesoscale cyclones were studied with the support by the Russian Science Foundation grant 21-77-10052. The eddies were identified at the support of the state assignment of MHI RAS on theme FNNN-2021-0003. Data processing was supported by state assignment of MHI RAS on theme FNNN-2021-0007.

Original russian text

Original Russian Text © A. A. Bogdanov, A. I. Mizyuk, A. A. Kubryakov, 2022, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 38, Iss. 6, pp. 567-584 (2022)

For citation

Bogdanov, A.A., Mizyuk, A.I. and Kubryakov, A.A., 2022. Evolution of Submesoscale Cyclones on the Batumi Anticyclone Periphery Based on the Numerical Simulation Data. Physical Oceanography, 29(6), pp. 550-566. doi:10.22449/1573-160X-2022-6-550-566

DOI

10.22449/1573-160X-2022-6-550-566

References

  1. McWilliams, J.C., 2016. Submesoscale Currents in the Ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2189), 20160117. doi:10.1098/rspa.2016.0117
  2. Korotaev, G.K. and Shutyaev, V.P., 2020. Numerical Simulation of Ocean Circulation with Ultrahigh Spatial Resolution. Izvestiya, Atmospheric and Oceanic Physics, 56(3), pp. 289-299. doi:10.1134/S000143382003010X
  3. Stanev, E.V., Ricker, M., Grayek, S., Jacob, B., Haid, V. and Staneva, J., 2020. Numerical Eddy-Resolving Modeling of the Ocean: Mesoscale and Sub-Mesoscale Example. Physical Oceanography, 27(6), pp. 631-658. doi:10.22449/1573-160X-2020-6-631-658
  4. Puzina, O.S., Kubryakov, A.A. and Mizyuk, A.I., 2021. Seasonal and Vertical Variability of Currents Energy in the Sub-Mesoscale Range on the Black Sea Shelf and Its Central Part. Physical Oceanography, 28(1), pp. 37-51. doi:10.22449/1573-160X-2021-1-37-51
  5. Kubryakov, A.A., Lishaev, P.N., Cheryzhenko, A.I., Aleskerova, A.A., Kubryakova, E.A., Medvedeva, A.V. and Stanichny, S.V., 2021. Impact of Submesoscale Eddies on the Transport of Suspended Matter in the Coastal Zone of Crimea Based on Drone, Satellite, and in Situ Measurement Data. Oceanology, 61(2), pp. 159-172. doi:10.1134/S0001437021020107
  6. Aleskerova, A., Kubryakov, A., Stanichny, S., Medvedeva, A., Plotnikov, E., Mizyuk, A. and Verzhevskaia, L., 2021. Characteristics of Topographic Submesoscale Eddies off the Crimea Coast from High-Resolution Satellite Optical Measurements. Ocean Dynamics, 71(6–7), pp. 655-677. https://doi.org/10.1007/s10236-021-01458-9
  7. Mahadevan, A., 2016. The Impact of Submesoscale Physics on Primary Productivity of Plankton. Annual Review of Marine Science, 8, pp. 161-184. https://doi.org/10.1146/annurevmarine-010814-015912
  8. Mikaelyan, A.S., Zatsepin, A.G. and Kubryakov, A.A., 2020. Effect of Mesoscale Eddy Dynamics on Bioproductivity of the Marine Ecosystems (Review). Physical Oceanography, 27(6), pp. 590-618. doi:10.22449/1573-160X-2020-6-590-618
  9. Demyshev, S.G. and Evstigneeva, N.A., 2016. Modeling Mesoand Sub-Mesoscale Circulation along the Eastern Crimean Coast Using Numerical Calculations. Izvestiya, Atmospheric and Oceanic Physics, 52(5), pp. 560-569. doi:10.1134/S0001433816050042
  10. Zatsepin, A.G., Baranov, V.I., Kondrashov, A.A., Korzh, A.O., Kremenetskiy, V.V., Ostrovskii, A.G. and Soloviev, D.M., 2011. Submesoscale Eddies at the Caucasus Black Sea Shelf and the Mechanisms of Their Generation. Oceanology, 51(4), 554. doi:10.1134/S0001437011040205
  11. Zatsepin, A., Kubryakov, A., Aleskerova, A., Elkin, D. and Kukleva, O., 2019. Physical Mechanisms of Submesoscale Eddies Generation: Evidences from Laboratory Modeling and Satellite Data in the Black Sea. Ocean Dynamics, 69(2), pp. 253-266. doi:10.1007/s10236018-1239-4
  12. Brannigan, L., 2016. Intense Submesoscale Upwelling in Anticyclonic Eddies. Geophysical Research Letters, 43(7), pp. 3360-3369. https://doi.org/10.1002/2016GL067926
  13. Brannigan, L., Marshall, D.P., Naveira Garabato, A.C., George Nurser, A.J. and Kaiser, J., 2017. Submesoscale Instabilities in Mesoscale Eddies. Journal of Physical Oceanography, 47(12), pp. 3061-3085. doi:10.1175/JPO-D-16-0178.1
  14. Ivanov, V.A. and Belokopytov, V.N., 2013. Oceanography of the Black Sea. Sevastopol: MHI, 210 p.
  15. Kubryakov, A.A. and Stanichny, S.V., 2015. Dynamics of Batumi Anticyclone from the Satellite Measurements. Physical Oceanography, (2), pp. 59-68. doi:10.22449/1573-160X2015-2-59-68
  16. Kubryakov, A.A. and Stanichny, S.V., 2015. Mesoscale Eddies in the Black Sea from Satellite Altimetry Data. Oceanology, 55(1), pp. 56-67. doi:10.1134/S0001437015010105
  17. Madec, G. and the NEMO team, 2016. NEMO Ocean Engine. Note du Pôle de modélisation de l'Institut Pierre-Simon Laplace No 27. 386 p. [online] Available at: http://www.nemoocean.eu/doc/ [Accessed: 10 September 2019].
  18. Mizyuk, A.I., Korotaev, G.K., Grigoriev, A.V., Puzina, O.S. and Lishaev, P.N., 2019. LongTerm Variability of Thermohaline Characteristics of the Azov Sea Based on the Numerical Eddy-Resolving Model. Physical Oceanography, 26(5), pp. 438-450. doi:10.22449/1573160X-2019-5-438-450
  19. Mizyuk, A.I. and Korotaev, G.K., 2020. Black Sea Intrapycnocline Lenses According to the Results of a Numerical Simulation of Basin Circulation. Izvestiya, Atmospheric and Oceanic Physics, 56(1), pp. 92-100. doi:10.1134/S0001433820010107
  20. Weiss, J., 1991. The Dynamics of Enstrophy Transfer in Two-Dimensional Hydrodynamics. Physica D: Nonlinear Phenomena, 48(2–3), pp. 273-294. https://doi.org/10.1016/01672789(91)90088-Q
  21. Belonenko, T.V. and Sholeninova, P.V., 2016. On Identification of Mesoscale Eddies from Satellite Altimetry Based on the Area in the NW Pacific. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 13(5), pp. 79-90. doi:10.21046/2070-74012016-13-5-79-90 (in Russian).
  22. Zhmur, V.V., 2010. Mesoscale Ocean Eddies. Moscow: GEOS, 290 p. (in Russian).

Download the article (PDF)