Distribution of Optical and Hydrological Characteristics in the Antarctic Sound Based on the Measurements in January, 2022 in the 87th cruise of the R/V “Akademik Mstislav Keldysh”

A. A. Latushkin1, ✉, V. I. Ponomarev2, P. A. Salyuk2, D. I. Frey1, 3, N. A. Lipinskaya1, S. P. Shkorba2

1 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

2 V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation

3 Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation

e-mail: sevsalat@gmail.com

Abstract

Purpose. The purpose of the work is to study the different-scale features of distribution of the hydrooptical and hydrological characteristics in the Antarctic Sound based on the contact and satellite measurements carried out in January, 2022 in the 87th cruise of the R/V “Akademik Mstislav Keldysh”.

Methods and Results. The data of complex natural measurements performed at the oceanographic stations in the Antarctic Sound on January 27–28, 2022 in the 87th cruise of the R/V “Akademik Mstislav Keldysh” were used. Additionally, the satellite data were analyzed. Complex hydrophysical equipment permitted to obtain the vertical profiles of temperature, salinity, dissolved oxygen, chlorophyll a concentration, fluorescence intensity of colored dissolved organic matter, intensity of the beam attenuation coefficient at 660 nm and photosynthetically active radiation. Based on these data, the main features of mesoscale circulation within the cyclonic gyre over the deep-sea part in the southern Antarctic Sound were determined. The joint analysis of hydrooptical and hydrological characteristics, and satellite measurements in the Antarctic Sound obtained in course of the Antarctic expedition showed presence of a system of the alternating anticyclonic and cyclonic eddies in the area under study. It is also shown that in the ice drift area polluted by land soils or shelf bottom sediments, a zone of the increased turbidity arises that is related to the terrigenous suspension entering into the water during ice melting.

Conclusions. The system of the different-scales eddies and currents in the Antarctic Sound contributes to the water exchange between the upper and deep layers of the strait, as well as between the Weddell Sea water spreading to the north-northwest along the slope of the strait basin adjacent to the shelf edge of the Antarctic Peninsula and the Bransfield Straight waters spreading along the slope of the islands’ shelf which is the northeastern boundary of the strait.

Keywords

Antarctic Sound, mesoscale eddies, hydrooptics, hydrology, beam attenuation coefficient, chlorophyll a concentration, fluorescence, dissolved organic matter, remote sensing

Acknowledgements

Study of mesoscale eddies based on natural and remote measurements was supported within the framework of state assignments MHI FNNN-2022-0001, FNNN-2021-0003, and POI No. 122110700009-1, No. 121021500054-3. Processing and analysis of hydrophysical data were supported by the RSF grant 22-77-10004.

Original russian text

Original Russian Text © The Authors, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 1, pp. 52-66 (2023)

For citation

Latushkin, A.A., Ponomarev, V.I., Salyuk, P.A., Frey, D.I., Lipinskaya, N.A. and Shkorba, S.P., 2023. Distribution of Optical and Hydrological Characteristics in the Antarctic Sound Based on the Measurements in January, 2022 in the 87th cruise of the R/V “Akademik Mstislav Keldysh”. Physical Oceanography, 30(1), pp. 47-61. doi:10.22449/1573-160X-2023-1-47-61

DOI

10.22449/1573-160X-2023-1-47-61

References

  1. Ponomarev, V.I., Fayman, P.A., Prants, S.V., Budyansky, M.V. and Uleysky, M.Yu., 2018. Simulation of Mesoscale Circulation in the Tatar Strait of the Japan Sea. Ocean Modelling, 126, pp. 43-55. doi:10.1016/j.ocemod.2018.04.006
  2. Jersild, A., Delawalla, S. and Ito, T., 2021. Mesoscale Eddies Regulate Seasonal Iron Supply and Carbon Drawdown in the Drake Passage. Geophysical Research Letters, 48(24), e2021GL096020. doi:10.1029/2021GL096020
  3. Krek, A.V., Krek, E.V. and Krechik, V.A., 2021. The Circulation and Mixing Zone in the Antarctic Sound in February 2020. In: E. G. Morozov, M. V. Flint and V. A. Spiridonov, 2021. Antarctic Peninsula Region of the Southern Ocean. Cham: Springer, pp. 83-99. doi:10.1007/978-3-030-78927-5_6
  4. Collares, L.L., Mata, M.M., Kerr, R., Arigony-Neto, J. and Barbat, M.M., 2018. Iceberg Drift and Ocean Circulation in the Northwestern Weddell Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 149, pp. 10-24. doi:10.1016/j.dsr2.2018.02.014
  5. Thompson, A.F., Heywood, K.J., Thorpe, S.E., Renner, A.H.H. and Trasviña, A., 2009. Surface Circulation at the Tip of the Antarctic Peninsula from Drifters. Journal of Physical Oceanography, 39(1), pp. 3-26. doi:10.1175/2008JPO3995.1
  6. Van Caspel, M., Hellmer, H.H. and Mata, M.M., 2018. On the Ventilation of Bransfield Strait Deep Basins. Deep Sea Research Part II: Topical Studies in Oceanography, 149, pp. 25-30. doi:10.1016/j.dsr2.2017.09.006
  7. Gordon, A.L., Mensch, M., Zhaoqian, D., Smethie Jr., W.M. and de Bettencourt, J., 2000. Deep and Bottom Water of the Bransfield Strait Eastern and Central Basins. Journal of Geophysical Research: Oceans, 105(C5), pp. 11337-11346. doi:10.1029/2000JC900030
  8. Huneke, W.G.C., Huhn, O. and Schröeder, M., 2016. Water Masses in the Bransfield Strait and Adjacent Seas, Austral Summer 2013. Polar Biology, 39, pp. 789-798. doi:10.1007/s00300- 016-1936-8
  9. Bograd, S.J., Stabeno, P.J. and Schumacher, J.D., 1994. A Census of Mesoscale Eddies in Shelikof Strait, Alaska, during 1989. Journal of Geophysical Research: Oceans, 99(C9), pp. 18243-18254. doi:10.1029/94JC01269
  10. Bruce, J.G., 1995. Eddies Southwest of the Denmark Strait. Deep Sea Research Part I: Oceanographic Research Papers, 42(1), pp. 13-29. doi:10.1016/0967-0637(94)00040-Y
  11. Rabinovich, A.B., Thomson, R.E. and Bograd, S.J., 2002. Drifter Observations of Anticyclonic Eddies near Bussol' Strait, the Kuril Islands. Journal of Oceanography, 58, pp. 661-671. doi:10.1023/A:1022890222516
  12. Zhou, M., Zhu, Y., Measures, C.I., Hatta, M., Charette, M.A., Gille, S.T., Frants, M., Jiang, M. and Mitchell, B.G., 2013. Winter Mesoscale Circulation on the Shelf Slope Region of the Southern Drake Passage. Deep-Sea Research Part II: Topical Studies in Oceanography, 90, pp. 4-14. doi:10.1016/j.dsr2.2013.03.041
  13. Bruno, M., Chioua, J., Romero, J., Vázquez, A., Macías, D., Dastis, C., Ramírez-Romeroe, E., Echevarria, F., Reyes, J. and García, C.M., 2013. The Importance of Sub-Mesoscale Processes for the Exchange of Properties through the Strait of Gibraltar. Progress in Oceanography, 116, pp. 66-79. doi:10.1016/j.pocean.2013.06.006
  14. Ryan, S., Schröder, M., Huhn, O. and Timmermann, R., 2016. On the Warm Inflow at the Eastern Boundary of the Weddell Gyre. Deep‐Sea Research Part I: Oceanographic Research Papers, 107, pp. 70-81. doi:10.1016/j.dsr.2015.11.002
  15. Vernet, M., Geibert, W., Hoppema, M., Brown, P.J., Haas, C., Hellmer, H.H., Jokat, W., Jullion, L., Mazloff, M. [et al.], 2019. The Weddell Gyre, Southern Ocean: Present Knowledge and Future Challenges. Reviews of Geophysics, 57(3), pp. 623-708. doi:10.1029/2018RG000604
  16. Nøst, O.A., Biuw, M., Tverberg, V., Lydersen, C., Hattermann, T., Zhou, Q., Smedsrud, L.H. and Kovacs, K.M., 2011. Eddy Overturning of the Antarctic Slope Front Controls Glacial Melting in the Eastern Weddell Sea. Journal of Geophysical Research: Oceans, 116(C11), C11014. doi:10.1029/2011JC006965
  17. Thompson, A.F., Heywood, K.J., Schmidtko, S. and Stewart, A.L., 2014. Eddy Transport as a Key Component of the Antarctic Overturning Circulation. Nature Geoscience, 7, pp. 879- 884. doi:10.1038/ngeo2289
  18. Stewart, A.L., Klocker, A. and Menemenlis, D., 2018. Circum‐Antarctic Shoreward Heat Transport Derived from an Eddy‐and Tide‐Resolving Simulation. Geophysical Research Letters, 45(2), pp. 834-845. doi:10.1002/2017GL075677
  19. Jerlov, N.G., 1976. Marine Optics. Elsevier Oceanography Series, vol. 14. Amsterdam: Elsevier, 231 p.
  20. Chapron, B., Kudryavtsev, V.N., Collard, F., Rascle, N., Kubryakov, A.A. and Stanichny, S.V., 2020. Studies of Sub-Mesoscale Variability of the Ocean Upper Layer Based on Satellite Observations Data. Physical Oceanography, 27(6), pp. 619-630. doi:10.22449/1573-160X-2020-6-619-630
  21. Kudryavtsev, V.N., Akimov, D.B. and Johannessen, O.M., 2003. Radar Imageing of the Ocean Mesoscale Variability. Earth Observations from Space, 2, pp. 27-46 (in Russian).
  22. Lavrova, O.Yu., Mityagina, M.I., Sabinin, K.D. and Serebryany, A.N., 2015. Study of Hydrodynamic Processes in the Shelf Zone Based on Satellite Data and Subsatellite Measurements. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 12(5), pp. 98-129 (in Russian).
  23. Prants, S.V., Ponomarev, V.I., Budyansky, M.V., Uleysky, M.Yu. and Fayman, P.A., 2015. Lagrangian Analysis of the Vertical Structure of Eddies Simulated in the Japan Basin of the Japan/East Sea. Ocean Modelling, 86, pp. 128-140. doi:10.1016/j.ocemod.2014.12.010
  24. Ponomarev, V.I., Fayman, P.A., Dubina, V.A. and Mashkina, I.V., 2013. Features of the Synoptic and Sub-Synoptic Scale Sea Water Dynamics over Continental Slope of the Japan Basin and Primorye Shelf. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 10(2), pp. 155-165 (in Russian).
  25. Salyuk, P.A., Glukhovets, D.I., Lipinskaya, N.A., Moiseeva, N.A., Churilova, T.Ya., Ponomarev, V.I., Aglova, E.A., Artemiev, V.A., Latushkin, A.A. and Major, A.Yu., 2021. Variability of the Sea Surface Bio-Optical Characteristics in the Region of Falkland Current and Patagonian Shelf. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 18(6), pp. 200-213. doi:10.21046/2070-7401-2021-18-6-200-213 (in Russian).

Download the article (PDF)