Investigation of Frontal Zones in the Norwegian Sea

A. F. Akhtyamova, V. S. Travkin

St. Petersburg University, Saint Petersburg, Russian Federation

e-mail: avellinnaa@gmail.com

Abstract

Purpose. Frontal zones are the areas of strong horizontal gradients of physical, chemical and biological parameters that have a significant impact on the dynamics of the Global Ocean. The aim of the paper is to study the spatial and vertical distribution (including seasonal and interannual variability) of frontal zones in the Norwegian Sea.

Methods and Results. The data on temperature, salinity, sea surface height and velocities from the GLORYS12V1 reanalysis for 1993–2019 available on the CMEMS (Copernicus Marine Environment Monitoring Service) resource, were used. Five mesoscale frontal zones in the area under study were identified, and the average and maximum gradients in the temperature, salinity and sea surface height fields were calculated. The maps of spatial distribution of the thermohaline and dynamic frontal zones, and also of the frequency of frontal zones were constructed. The correlation between the atmospheric indices NAO (North Atlantic Oscillation) and AO (Arctic Oscillation), and the temporal and interannual variability of the frontal zone areas was assessed.

Conclusions. It is shown that the thermohaline and dynamic gradients observed in winter are on the average higher than those observed in summer. It is found that increase of depth is accompanied by a shift of the frontal zones towards the Lofoten Basin and the Faroe-Iceland threshold. The frontal zones frequency maps demonstrate a high rate (≥ 50%) of the areas with strong gradients near the Lofoten Vortex, Svalbard, the Mohn Ridge and the Norwegian continental slope. The majority of frontal zones are of well pronounced seasonal and interannual variability. A negative interannual correlation is noted between the frontal zones areas and the NAO and AO indices. It is also shown that seasonal variability is in high positive correlation with NAO.

Keywords

Norwegian Sea, frontal zones, seasonal variability, interannual variability, NAO index, AO index, arctic oscillation

Acknowledgements

The study was supported financially by the Russian Science Foundation, project No. 22-27-00004.

Original russian text

Original Russian Text © A. F. Akhtyamova, V. S. Travkin, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 1, pp. 67-83 (2023)

For citation

Akhtyamova, A.F. and Travkin, V.S., 2023. Investigation of Frontal Zones in the Norwegian Sea. Physical Oceanography, 30(1), pp. 62-77. doi:10.29039/1573-160X-2023-1-62-77

DOI

10.29039/1573-160X-2023-1-62-77

References

  1. Kostianoy, A.G. and Nihoul, J.C.J., 2009. Frontal Zones in the Norwegian, Greenland, Barents and Bering Seas. In: J. C. J. Nihoul, A. G. Kostianoy, eds., 2009. Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions. Dordrecht: Springer, pp. 171-190. https://doi.org/10.1007/978-1-4020-9460-6_13
  2. Olson, D.B., Hitchcock, G.L., Mariano, A.J., Ashjian, C.J., Peng, G., Nero, R.W. and Podestá, G.P., 1994. Life on the Edge: Marine Life and Fronts. Oceanography, 7(2), pp. 52-60. https://doi.org/10.5670/oceanog.1994.03
  3. Bakun, A., 2006. Fronts and Eddies as Key Structures in the Habitat of Marine Fish Larvae: Opportunity, Adaptive Response and Competitive Advantage. Scientia Marina, 70(Suppl. 2), pp. 105-122. https://doi.org/10.3989/scimar.2006.70s2105
  4. Kushnir, V., Pavlov, V., Morozov, A. and Pavlova, O., 2011. “Flashes” of Chlorophyll-a Concentration Derived from in Situ and Remote Sensing Data at the Polar Front in the Barents Sea. The Open Oceanography Journal, 5, pp. 14-21. doi:10.2174/1874252101105010014
  5. Russell, R.W., Harrison, N.M. and Hunt Jr., G.L., 1999. Foraging at a Front: Hydrography, Zooplankton, and Avian Planktivory in the Northern Bering Sea. Marine Ecology Progress Series, 182, pp. 77-93. doi:10.3354/meps182077
  6. Mańko, M.K., Merchel, M., Kwasniewski, S. and Weydmann-Zwolicka, A., 2022. Oceanic Fronts Shape Biodiversity of Gelatinous Zooplankton in the European Arctic. Frontiers in Marine Science, 9, 941025. doi:10.3389/fmars.2022.941025
  7. Chapman, C.C., 2014. Southern Ocean Jets and How to Find Them: Improving and Comparing Common Jet Detection Methods. Journal of Geophysical Research: Oceans, 119(7), pp. 4318-4339. doi:10.1002/2014jc009810
  8. Orvik, K.A., and Niiler, P., 2002. Major Pathways of Atlantic Water in the Northern North Atlantic and Nordic Seas toward Arctic. Geophysical Research Letters, 29(19), 1896. doi:10.1029/2002gl015002
  9. Malinin, V.N. and Gordeeva, S.M., 2009. Fishery Oceanology of South-East Pacific. Volume I. Variability of Habitat Factors. St. Petersburg: RGGMU Publishing House, 278 p. (in Russian).
  10. Belonenko, T.V., Travkin, V.S., Koldunov, A.V. and Volkov, D.L., 2021. Topographic Experiments over Dynamical Processes in the Norwegian Sea. Russian Journal of Earth Sciences, 21, ES1006. doi:10.2205/2020ES000747
  11. Yu, L.‐S., Bosse, A., Fer, I., Orvik, K.A., Bruvik, E.M., Hessevik, I. and Kvalsund, K., 2017. The Lofoten Basin Eddy: Three Years of Evolution as Observed by Seagliders. Journal of Geophysical Research: Oceans, 122(8), pp. 6814-6834. doi:10.1002/2017jc012982
  12. Bashmachnikov, I.L., Belonenko, T.V. and Kuibin, P.A., 2017. Application of the Theory of Columnar Q-Vortices with Helical Structure for the Lofoten Vortex in the Norwegian Sea. Vestnik of St Petersburg University. Earth Sciences, 62(3), pp. 221-236. doi:10.21638/11701/spbu07.2017.301 (in Russian).
  13. Travkin, V.S. and Belonenko, T.V., 2021. Study of the Mechanisms of Vortex Variability in the Lofoten Basin Based on Energy Analysis. Physical Oceanography, 28(3), pp. 294-308. doi:10.22449/1573-160X-2021-3-294-308
  14. Raj, R.P., Chafik, L., Nilsen, J.E.Ø., Eldevik, T. and Halo, I., 2015. The Lofoten Vortex of the Nordic Seas. Deep-Sea Research Part I: Oceanographic Research Papers, 96, pp. 1-14. doi:10.1016/j.dsr.2014.10.011
  15. Travkin, V.S., Belonenko, T.V. and Kubryakov, A.A., 2022. Cold Spot over the Lofoten Vortex. Izvestiya, Atmospheric and Oceanic Physics, 58(12), pp. 1458-1469.
  16. Fedorov, A.M., Bashmachnikov, I.L. and Belonenko, T.V., 2019. Winter Convection in the Lofoten Basin according to ARGO Buoys and Hydrodynamic Modeling. Vestnik of St Petersburg University. Earth Sciences, 64(3), pp. 491-511. doi:10.21638/spbu07.2019.308 (in Russian).
  17. Belonenko, T., Zinchenko, V., Gordeeva, S. and Raj, R.P., 2020. Evaluation of Heat and Salt Transports by Mesoscale Eddies in the Lofoten Basin. Russian Journal of Earth Sciences, 20, ES6011. doi:10.2205/2020ES000720
  18. Novoselova, E.V. and Belonenko, T.V., 2020. Isopycnal Advection in the Lofoten Basin of the Norwegian Sea. Fundamental and Applied Hydrophysics, 13(3), pp. 56-67. doi:10.7868/S2073667320030041 (in Russian).
  19. Volkov, D.L., Kubryakov, A.A. and Lumpkin, R., 2015. Formation and Variability of the Lofoten Basin Vortex in a High-Resolution Ocean Model. Deep Sea Research Part I: Oceanographic Research Papers, 105, pp. 142-157. doi:10.1016/j.dsr.2015.09.001
  20. Raj, R.P., Chatterjee, S., Bertino, L., Turiel, A. and Portabella, M., 2019. The Arctic Front and Its Variability in the Norwegian Sea. Ocean Science, 15(6), pp. 1729-1744. doi:10.5194/os-15-1729-2019
  21. Mork, K.A. and Skagseth, Ø., 2010. A Quantitative Description of the Norwegian Atlantic Current by Combining Altimetry and Hydrography. Ocean Science, 6(4), pp. 901-911. doi:10.5194/os-6-901-2010
  22. Bosse, A. and Fer, I., 2019. Mean Structure and Seasonality of the Norwegian Atlantic Front Current along the Mohn Ridge from Repeated Glider Transects. Geophysical Research Letters, 46(22), pp. 13170-13179. doi:10.1029/2019GL084723
  23. Walczowski, W., 2014. Atlantic Water in the Nordic Seas. GeoPlanet: Earth and Planetary Sciences. Cham: Springer, 174 p. doi:10.1007/978-3-319-01279-7
  24. Kostianoy, A.G., Nihoul, J.C.J. and Rodionov, V.B., 2004. Physical Oceanography of Frontal Zones in the Subarctic Seas. Elsevier, 316 p. doi:10.1016/s0422-9894(04)x8014-4
  25. Johannessen, O.M., 1986. Brief Overview of the Physical Oceanography. In: B. G. Hurdle, ed., 1986. The Nordic Seas. New York: Springer, pp. 103-124. doi:10.1007/978-1-4615-8035-5
  26. Belkin, I.M. and Cornillon, P.C., 2007. Fronts in the World Ocean’s Large Marine Ecosystems. ICES CM 2007/D: 21. International Council for the Exploration of the Sea, 33 p.
  27. Smart, J.H., 1984. Spatial Variability of Major Frontal Systems in the North Atlantic- Norwegian Sea Area: 1980–81. Journal of Physical Oceanography, 14(1), pp. 185-192. https://doi.org/10.1175/1520-0485(1984)014%3C0185:SVOMFS%3E2.0.CO;2
  28. Nesterov, E.S., 2013. [North Atlantic Oscillation: Atmosphere and Ocean]. Moscow: Triada Ltd, 144 p. (in Russian).
  29. Gulev, S.K., Kolinko, A.V. and Lappo, S.S., 1994. [Synoptic Interaction of the Ocean and Atmosphere in the Middle Latitudes]. St. Petersburg: Hydrometeoizdat, 320 p. (in Russian).
  30. Thompson, D.W. and Wallace, J.M., 1998. The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields. Geophysical Research Letters, 25(9), pp. 1297- 1300. doi:10.1029/98GL00950
  31. Gong, H., Wang, L., Chen, W. and Nath, D., 2018. Multidecadal Fluctuation of the Wintertime Arctic Oscillation Pattern and Its Implication. Journal of Climate, 31(14), pp. 5595-5608. doi:10.1175/jcli-d-17-0530.1
  32. Chen, S., Chen, W. and Wu, R., 2015. An Interdecadal Change in the Relationship between Boreal Spring Arctic Oscillation and the East Asian Summer Monsoon around the Early 1970s. Journal of Climate, 28(4), pp. 1527-1542. doi:10.1175/JCLI-D-14-00409.1
  33. Ambaum, M.H.P., Hoskins, B.J. and Stephenson, D.B., 2001. Arctic Oscillation or North Atlantic Oscillation? Journal of Climate, 14(16), pp. 3495-3507. doi:10.1175/1520- 0442(2001)014<3495:aoonao>2.0.co;2
  34. Belkin, I.M., 2021. Remote Sensing of Ocean Fronts in Marine Ecology and Fisheries. Remote Sensing, 13(5), 883. doi:10.3390/rs13050883
  35. Miller, P.I., Read, J.F. and Dale, A.C., 2013. Thermal Front Variability along the North Atlantic Current Observed Using Microwave and Infrared Satellite Data. Deep Sea Research Part II: Topical Studies in Oceanography, 98(B), pp. 244-256. doi:10.1016/j.dsr2.2013.08.014
  36. Wall, C.C., Muller-Karger, F.E., Roffer, M.A., Hu, C., Yao, W. and Luther, M.E., 2008. Satellite Remote Sensing of Surface Oceanic Fronts in Coastal Waters off West-Central Florida. Remote Sensing of Environment, 112(6), pp. 2963-2976. doi:10.1016/j.rse.2008.02.007
  37. Belkin, I.M. and O’Reilly, J.E., 2009. An Algorithm for Oceanic Front Detection in Chlorophyll and SST Satellite Imagery. Journal of Marine Systems, 78(3), pp. 319-326. https://doi.org/10.1016/j.jmarsys.2008.11.018
  38. Ozhigin, V.K., Ivshin, V.A., Trofimov, A.G., Karsakov, A.L. and Anciferov, M.Y., 2016. The Barents Sea Water: Structure, Circulation, Variability. Murmansk: PINRO, 260 p. (in Russian).
  39. Moiseev, D.D., Zaporozhtsev, I.F., Maksimovskaya, T.M. and Dukhno, G.N., 2019. Identification of Frontal Zones Position on the Surface of the Barents Sea According to in Situ and Remote Sensing Data. Arctic: Ecology and Economy, (2), pp. 48-63. doi:10.25283/2223- 4594-2019-2-48-63 (in Russian).
  40. Roa-Pascuali, L., Demarcq, H. and Nieblas, A.-E., 2015. Detection of Mesoscale Thermal Fronts from 4km Data Using Smoothing Techniques: Gradient-Based Fronts Classification and Basin Scale Application. Remote Sensing of Environment, 164, pp. 225-237. doi:10.1016/j.rse.2015.03.030
  41. Foux, V.R., 2009. On Estimation of an Ocean Front Location Depending on the Satellite Measurements. Fundamental and Applied Hydrophysics, (1), pp. 29-34 (in Russian).
  42. Nilsen, J.E.Ø. and Nilsen, F., 2007. The Atlantic Water Flow along the Vøring Plateau: Detecting Frontal Structures in Oceanic Station Time Series. Deep Sea Research Part I: Oceanographic Research Papers, 54(3), pp. 297-319. doi:10.1016/j.dsr.2006.12.012
  43. Blindheim, J. and Ådlandsvik, B., 1995. Episodic Formation of Intermediate Water along the Greenland Sea Arctic Front. ICES C.M. 1995. Available at: https://www.ices.dk/sites/pub/CM%20Doccuments/1995/Mini/1995_Mini6.pdf [Accessed: 15 January 2022].
  44. Mork, K.A. and Blindheim, J., 2000. Variation in the Atlantic Inflow to the Nordic Seas, 1955-1996. Deep Sea Research Part I: Oceanographic Research Papers, 47(6), pp. 1035- 1057. doi:10.1016/S0967-0637(99)00091-6
  45. Piechura, J. and Walczowski, W., 1995. The Arctic Front: Structure and Dynamics. Oceanologia, 37(1), pp. 47-73.

Download the article (PDF)