Estimation of Internal Wave Parameters in the Arctic Based on Synthetic Aperture Satellite Radar Data

A. E. Pogrebnoi

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: pogrebok57@mail.ru

Abstract

Purpose. The work is aimed at developing a technique for calculating the solitary internal wave parameters (solitons generated by a semi-diurnal tide) based on their manifestations on the ocean surface in the presence of ice.

Methods and Results. Sequential soundings of the Sentinel-1A and Sentinel-1B radar satellites west of the deep-sea part of the Fram Strait in August, 2018 were analyzed. Identification of the internal waves’ surface manifestations on the radar satellite images is reduced to finding thin bright bands elongated along the wave crests. Bright pixels, the distance between which is less than the visual width of the ridges, are united into the clusters. The clusters whose sizes exceed the threshold value and for which the anisotropy (the ratio of the semi-axes of the approximating ellipse) is also high, are considered to correspond to the internal waves (in contrast to ice). For each such cluster, the interpolated spatial coordinates are calculated along the corresponding wave extremum. Based on the proposed method, the horizontal size (“wavelength” ~ 1.5 km) and the phase speed (~ 1 m/s) of solitary internal waves are assessed. The repetition period of solitons was ~ 24 min. The leading wave propagation speed appeared to be 10 % higher than that of the next one. During the time between soundings (~ 48 min), this leads to a "wavelength" increase (red shift) between them – from 1.3 to 1.6 km. The curvature radii’ values of each wave front are also calculated. The information on spatial position of the fronts’ curvature centers permits to assume the place of generation of the analyzed internal waves, namely the underwater bank (80° 45' N, 8° 30' W), the depth above which is less than 20 m.

Conclusions. The proposed method for identifying internal waves can be used to assess their kinematic and dynamic characteristics.

Keywords

internal waves, phase speed of internal waves, solitons, satellite radar images of the ocean surface, Fram Strait, Arctic

Acknowledgements

The study was financially supported by the Russian Science Foundation Grant No. 21-17-00278.

Original russian text

Original Russian Text © A. E. Pogrebnoi, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 1, pp. 106-119 (2023)

For citation

Pogrebnoi, A.E., 2023. Estimation of Internal Wave Parameters in the Arctic Based on Synthetic Aperture Satellite Radar Data. Physical Oceanography, 30(1), pp. 98-111. doi:10.29039/1573-160X-2023-1-98-111

DOI

10.29039/1573-160X-2023-1-98-111

References

  1. Rippeth, T.P., Lincoln, B.J., Lenn, Y.-D., Mattias Green, J.A., Sundfjord, A. and Bacon, S., 2015. Tide-Mediated Warming of Arctic Halocline by Atlantic Heat Fluxes over Rough Topography. Nature Geoscience, 8, pp. 191-194. doi:10.1038/ngeo2350
  2. Morozov, E.G. and Pisarev, S.V., 2004. Internal Waves and Polynya Formation in the Laptev Sea. Doklady Earth Sciences, 398(7), pp. 983-986.
  3. Czipott, P.V., Levine, M.D., Paulson, C.A., Menemenlis, D., Farmer, D.M. and Williams, R.G., 1991. Ice Flexure Forced by Internal Wave Packets in the Arctic Ocean. Science, 254(5033), pp. 832-835. doi:10.1126/science.254.5033.832
  4. Zubkova, E.V., Kozlov, I.E. and Kudryavtsev, V.N., 2016. Spaceborne SAR Observations of Short-Period Internal Waves in the Laptev Sea. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 13(6), pp. 99-109. doi:10.21046/2070-7401-2016-13-6-99-109 (in Russian).
  5. Konyaev, K.V., 2000. Internal Tide at the Critical Latitude. Izvestiya, Atmospheric and Oceanic Physics, 36(3), pp. 363-375.
  6. Morozov, E.G. and Pisarev, S.V., 2002. Internal Tides at the Arctic Latitudes (Numerical Experiments). Oceanology, 42(2), pp. 153-161.
  7. Morozov, E.G. and Paka, V.T., 2010. Internal Waves in a High-Latitude Region. Oceanology, 50(5), pp. 668-674. doi:10.1134/S0001437010050048
  8. Alpers, W., 1985. Theory of Radar Imaging of Internal Waves. Nature, 314, pp. 245-247. doi:10.1038/314245a0
  9. Bakhanov, V.V., Zuev, A.L., Marov, M.N. and Pelinovskii, E.N., 1989. Influence of Internal Waves on the Characteristics of Microwave Signals Scattered by the Sea Surface. Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics, 25(4), pp. 387-395 (in Russian).
  10. Kudryavtsev, V., Kozlov, I., Chapron, B. and Johannessen, J.A., 2014. Quad-Polarization SAR Features of Ocean Currents. Journal of Geophysical Research: Oceans, 119(9), pp. 6046-6065. doi:10.1002/2014JC010173
  11. Hong, D.-B., Yang, C.-S. and Ouchi, K., 2015. Estimation of Internal Wave Velocity in the Shallow South China Sea Using Single and Multiple Satellite Images. Remote Sensing Letters, 6(6), pp. 448-457. doi:10.1080/2150704X.2015.1034884
  12. Liu, B., Yang, H., Ding, X. and Li, X., 2014. Tracking the Internal Waves in the South China Sea with Environmental Satellite Sun Glint Images. Remote Sensing Letters, 5(7), pp. 609- 618. doi:10.1080/2150704X.2014.949365
  13. Tensubam, C.M., Raju, N.J., Dash, M.K. and Barskar, H., 2020. Estimation of Internal Solitary Wave Propagation Speed in the Andaman Sea Using Multi-Satellite Images. Remote Sensing of Environment, 252, 112123. doi:10.1016/j.rse.2020.112123
  14. Kozlov, I.E., Zubkova, E.V. and Kudryavtsev, V.N., 2017. Internal Solitary Waves in the Laptev Sea: First Results of Spaceborne SAR Observations. IEEE Geoscience and Remote Sensing Letters, 14(11), pp. 2047-2051. doi:10.1109/LGRS.2017.2749681
  15. Kozlov, I.E. and Mikhaylichenko, T.V., 2021. Estimation of Internal Wave Phase Speed in the Arctic Ocean from Sequential Spaceborne SAR Observations. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 18(5), pp. 181-192. doi:10.21046/2070- 7401-2021-18-5-181-192 (in Russian).
  16. Kozlov, I.E., Kudryavtsev, V.N., Zubkova, E.V., Zimin, A.V. and Chapron, B., 2015. Characteristics of Short-Period Internal Waves in the Kara Sea Inferred from Satellite SAR Data. Izvestiya, Atmospheric and Oceanic Physics, 51(9), pp. 1073-1087. doi:10.1134/S0001433815090121
  17. Zimin, A.V., Kozlov, I.E., Atadzhanova, O.A. and Chapron, B., 2016. Monitoring Short-Period Internal Waves in the White Sea. Izvestiya, Atmospheric and Oceanic Physics, 52(9), pp. 951-960. doi:10.1134/S0001433816090309
  18. Ivanov, V.A., Shul’ga, Т.Ya., Bagaev, А.V., Medvedeva, А.V., Plastun, Т.V., Verzhevskaya, L.V. and Svishcheva, I.A., 2019. Internal Waves on the Black Sea Shelf near the Heracles Peninsula: Modeling and Observation. Physical Oceanography, 26(4), pp. 288-304. doi:10.22449/1573-160X-2019-4-288-304
  19. Bondur, V.G., Morozov, E.G. and Grebenuk, U.V., 2006. [Radar Observation and Numerical Modeling of Internal Tidal Waves off the Coast of the Northwest Atlantic]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 3(2), pp. 21-29 (in Russian).
  20. Otsu, N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), pp. 62-66. doi:10.1109/TSMC.1979.4310076
  21. Cleveland, W.S., 1979. Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), pp. 829-836. doi:10.1080/01621459.1979.10481038
  22. Serebryany, A.N., 1993. Manifestation of Soliton Properties on Internal Waves on a Shelf. Izvestiya, Atmospheric and Oceanic Physics, 29(2), pp. 229-238.
  23. Yong, D.H. and LeVeque, R.J., 2003. Solitary Waves in Layered Nonlinear Media. SIAM Journal on Applied Mathematics, 63(5), pp. 1539-1560. doi:10.1137/S0036139902408151
  24. Sabinin, K.D. and Serebryanyi, A.N., 2007. “Hot Spots” in the Field of Internal Waves in the Ocean. Acoustical Physics, 53(3), pp. 357-380. doi:10.1134/S1063771007030128
  25. Ródenas, J.A. and Garello, R., 1997. Wavelet Analysis in SAR Ocean Image Profiles for Internal Wave Detection and Wavelength Estimation. IEEE Transactions on Geoscience and Remote Sensing, 35(4), pp. 933-945. doi:10.1109/36.602535
  26. Jakobsson, M., Mayer, L.A., Bringensparr, C., Castro, C.F., Mohammad, R., Johnson, P., Kettler, T., Accettella, D., Amblas, D. [et al.], 2020. The International Bathymetric Chart of the Arctic Ocean Version 4.0. Scientific Data, 7, 176. doi:10.1038/s41597-020-0520-9

Download the article (PDF)