Studying Diurnal Dynamics of Vertical Methane Distribution in the Black Sea Aerobic Zone Combined with Acoustic Research of the Sound-Scattering Layers

T. V. Malakhova1, ✉, Yu. G. Artemov1, A. I. Khurchak1, L. V. Reshetnik1, A. V. Fedirko2, V. N. Egorov1

1 A. O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: t.malakhova@imbr-ras.ru

Abstract

Purpose. The purpose of the study is to assess the diurnal dynamics of CH4 vertical distribution in the aerobic zone of the Black Sea at the stations of different depths joint with surveying the sound scattering layers (SSL).

Methods and Results. The surveys were performed in the 113th cruise of the R/V Professor Vodyanitsky (June, 2020) in the upper 100-m layer at the deep-water station (1570 m) in the northeastern Black Sea, and at the shallow-water station (39 m) in the Yalta Bay. The differences in vertical distribution of the CH4 concentration in the seawater in these areas were found. Diurnal range of the CH4 concentrations in the surface water layer (0–1 m) was 0.8–16 nmol/l and 0.2–7 nmol/l for the shallow and deep-water areas, respectively. Shown was the fluxes’ high variability at the water – atmosphere boundary in course of a day, namely, from the atmospheric CH4 inflow to the seawater up to the CH4 emission (up to 3 μmol/m2day) to the atmosphere.

Conclusions. The maximum CH4 fluxes to the atmosphere recorded at both stations were observed at night. It was shown that the atmospheric CH4 emission to seawater was not a significant factor in the CH4 redistribution in a water column since the calculated values of the atmosphere – seawater specific daily CH4 flux constituted the fractions of a percent of its store in the water column. Diurnal dynamics of the vertical CH4 distribution and SSL in the aerobic layer of the deep-water station was revealed to be of a similar pattern. Against high variability of the data for the individual time ranges, obtained were significant determination coefficients between the CH4 concentration and the sound-scattering coefficient of layer ml' as a characteristic of the biomass amount.

Keywords

methane, “methane paradox”, emission, aerobic layer, sound-scattering layers, Black Sea

Acknowledgements

The authors are grateful to the crew of the 113th cruise of the R/V Professor Vodyanitsky and to E. O. Sakhon for their assistance in the outboard operations. The study was carried out within the framework of the state assignment of IBSS of RAS “Molismological and biogeochemical foundations of homeostasis of marine ecosystems” (121031500515-8).

Original russian text

Original Russian Text © The Authors, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 2, pp. 249-265 (2023)

For citation

Malakhova, T.V., Artemov, Yu.G., Khurchak, A.I., Reshetnik, L.V., Fedirko, A.V. and Egorov, V.N., 2023. Studying Diurnal Dynamics of Vertical Methane Distribution in the Black Sea Aerobic Zone Combined with Acoustic Research of the Sound-Scattering Layers. Physical Oceanography, 30(2), pp. 229-244. doi:10.29039/1573-160X-2023-2-229-244

DOI

10.29039/1573-160X-2023-2-229-244

References

  1. Reeburgh, W.S., 2007. Oceanic Methane Biogeochemistry. Chemical Reviews, 107(2), pp. 486-513. doi:10.1021/cr050362v
  2. Brough, T., Rayment, W. and Dawson, S., 2019. Using a Recreational Grade Echosounder to Quantify the Potential Prey Field of Coastal Predators. PLoS ONE, 14(5), e0217013. doi:10.1371/journal.pone.0217013
  3. Karl, D.M. and Tilbrook, B.D., 1994. Production and Transport of Methane in Oceanic Particulate Organic Matter. Nature, 368, pp. 732-734. doi:10.1038/368732a0
  4. Bižić, M., Grossart, H.-P. and Ionescu, D., 2020. Methane Paradox. In: John Wiley & Sons, Ltd (Eds.), 2020. Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd., pp. 1- 11. doi:10.1002/9780470015902.a0028892
  5. Rusanov, I.I., Lein, A.Yu., Pimenov, N.V., Yusupov, S.K. and Ivanov, M.V., 2002. The Biogeochemical Cycle of Methane on the Northwestern Shelf of the Black Sea. Microbiology, 71(4), pp. 479-487. doi:10.1023/A:1019862014508
  6. Amouroux, D., Roberts, G., Rapsomanikis, S. and Andreae, M.O., 2002. Biogenic Gas (CH4, N20, DMS) Emission to the Atmosphere from Near-Shore and Shelf Waters of the North- western Black Sea. Estuarine, Coastal and Shelf Science, 54(3), pp. 575-587. doi:10.1006/ecss.2000.0666
  7. Egorov, A.V., 2002. [Some Features of Methane Distribution in the Water Column of the Northeastern Part of the Black Sea]. In: Multidisciplinary Investigations of the Northeast Part of the Black Sea. Moscow: Nauka, pp. 183-190 (in Russian).
  8. Karl, D.M., Beversdorf, L., Björkman, K.M., Church, M.J., Martinez, A. and Delong, E.F., 2008. Aerobic Production of Methane in the Sea. Nature Geoscience, 1(7), pp. 473-478. doi:10.1038/ngeo234
  9. Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K. and Keine, R.P., 2010. Methane Production in Aerobic Oligotrophic Surface Water in the Central Arctic Ocean. Biogeosciences, 7(3), pp. 1099-1108. doi:10.5194/bg-7-1099-2010
  10. Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W. and Tang, K.W., 2011. Microbial Methane Production in Oxygenated Water Column of an Oligotrophic Lake. Proceedings of the National Academy of Sciences of the United States of America, 108(49), pp. 19657-19661. doi:10.1073/pnas.1110716108
  11. Tang, K.W., McGinnis, D.F., Ionescu, D. and Grossart, H.-P., 2016. Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air. Environmental Science & Technology Letters, 3(6), pp. 227-233. doi:10.1021/acs.estlett.6b00150
  12. Lilley, M.D., Baross, J.A. and Gordon, L.I., 1982. Dissolved Hydrogen and Methane in Saanich Inlet, British Columbia. Deep-Sea Research Part A. Oceanographic Research Papers, 29(12), pp. 1471-1484. doi:10.1016/0198-0149(82)90037-1
  13. Oremland, R.S., 1979. Methanogenic Activity in Plankton Samples and Fish Intestines A Mechanism for in Situ Methanogenesis in Oceanic Surface Waters. Limnology and Oceanography, 24(6), pp. 1136-1141. doi:10.4319/lo.1979.24.6.1136
  14. Sieburth, J.M., 1987. Contrary Habitats for Redox-Specific Processes: Methanogenesis in Oxic Waters and Oxidation in Anoxic. In: M. A. Sleigh, ed., 1987. Microbes in the Sea. Chichester, U.K.: Ellis Horwood, pp. 11-38.
  15. Klintzsch, T., Langer, G., Nehrke, G., Wieland, A., Lenhart, K. and Keppler, F., 2019. Methane Production by Three Widespread Marine Phytoplankton Species: Release Rates, Precursor Compounds, and Potential Relevance for the Environment. Biogeosciences, 16(20), pp. 4129-4144. doi:10.5194/bg-16-4129-2019
  16. Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S. and Keppler, F., 2016. Evidence for Methane Production by the Marine Algae Emiliania Huxleyi. Biogeosciences, 13(10), pp. 3163-3174. doi:10.5194/bg-13-3163-2016
  17. Lenhart, K., Bunge, M., Ratering, S., Neu, T.R., Schüttmann, I., Greule, M., Kammann, C., Schnell, S., Müller, C., Zorn, H. and Keppler, F., 2012. Evidence for Methane Production by Saprotrophic Fungi. Nature Communications, 3, 1046. doi:10.1038/ncomms2049
  18. Fixen, K.R., Zheng, Y., Harris, D.F., Shaw, S., Yang, Z.-Y., Dean, D.R., Seefeldt, L.C. and Harwood, C.S., 2006. Light-Driven Carbon Dioxide Reduction to Methane by Nitrogenase in a Photosynthetic Bacterium. Proceedings of the National Academy of Sciences of the United States of America, 113(36), pp. 10163-10167. doi:10.1073/pnas.1611043113
  19. Zheng, Y., Harris, D.F., Yu, Z., Fu, Y., Poudel, S., Ledbetter, R.N., Fixen, K.R., Yang, Z.-Y., Boyd, E.S. [et al.], 2018. A Pathway for Biological Methane Production Using Bacterial Iron- Only Nitrogenase. Nature Microbiology, 3(3), pp. 281-286. doi:10.1038/s41564-017-0091-5
  20. DelSontro, T., del Giorgio, P.A. and Prairie, Y.T., 2018. No Longer a Paradox: The Interaction Between Physical Transport and Biological Processes Explains the Spatial Distribution of Surface Water Methane within and across Lakes. Ecosystems, 21(6), pp. 1073- 1087. https://doi.org/10.1007/s10021-017-0205-1
  21. Günthel, M., Donis, D., Kirillin, G., Ionescu, D., Bizic, M., McGinnis, D.F., Grossart, H.-P. and Tang, K.W., 2019. Contribution of Oxic Methane Production to Surface Methane Emission in Lakes and Its Global Importance. Nature Communications, 10(1), 5497. doi:10.1038/s41467-019-13320-0
  22. Marty, D.G., 1993. Methanogenic Bacteria in Seawater. Limnology and Oceanography, 38(2), pp. 452-456. https://doi.org/10.4319/lo.1993.38.2.0452
  23. De Angelis, M.A. and Lee, C., 1994. Methane Production during Zooplankton Grazing on Marine Phytoplankton. Limnology and Oceanography, 39(6), pp. 1298-1308. doi:10.4319/lo.1994.39.6.1298
  24. Schmale, O., Wäge, J., Mohrholz, V., Wasmund, N., Gräwe, U., Rehder, G., Labrenz, M. and Loick-Wilde, N., 2018. The Contribution of Zooplankton to Methane Supersaturation in the Oxygenated Upper Waters of the Central Baltic Sea. Limnology and Oceanography, 63(1), pp. 412-430. doi:10.1002/lno.10640
  25. Klintzsch, T., Langer, G., Wieland, A., Geisinger, H., Lenhart, K., Nehrke, G. and Keppler, F., 2020. Effects of Temperature and Light on Methane Production of Widespread Marine Phytoplankton. Journal of Geophysical Research: Biogeosciences, 125(9), e2020JG005793. doi:10.1029/2020JG005793
  26. Egorov, V.N., Artemov, Yu.G. and Gulin S.B., 2011. Methane Seeps in the Black Sea: Environment-Forming and Ecological Role. Sevastopol: ECOSI-Gidrofizika, 405 p. (in Russian).
  27. Bange, H.W., Bergmann, K., Hansen, H.P., Kock, A., Koppe, R., Malien, F. and Ostrau, C., 2010. Dissolved Methane during Hypoxic Events at the Boknis Eck Time Series Station (Eckernförde Bay, SW Baltic Sea). Biogeosciences, 7(4), pp. 1279-1284. doi:10.5194/bg-7- 1279-2010
  28. Sudheesh, V., Gupta, G.V.M. and Naqvi, S.W.A., 2020. Massive Methane Loss during Seasonal Hypoxia/Anoxia in the Nearshore Waters of Southeastern Arabian Sea. Frontiers in Marine Science, 7, 324. doi:10.3389/fmars.2020.00324
  29. Malakhova, T.V., Mansurova, I.M., Malakhova, L.V., Minina, N.V. and Zagovenkova, A.D., 2020. Features of Methane Distribution in the Euphotic Layer of the Northern Black Sea in Summer, 2018 (Based on the Data of the 102nd Cruise of R/V "Professor Vodyanitsky"). Physical Oceanography, 27(2), pp. 171-185. doi:10.22449/1573-160X-2020-2-171-185
  30. Kolb, B. and Ettre, L.S., 2006. Static Headspace-Gas Chromatography: Theory and Practice. Hoboken, New Jersey: John Wiley & Sons, 349 p.
  31. Obzhirov, A.I., Shakirov, R.B., Maltceva, E.V., Gresov, A.I., Syrbu, N.S. and Okulov, A.K., 2012. Methane Distribution in Water and Sediments at the East Sakhalin Coastal Area, Shelf and Slope of the Sea of Okhotsk. Vestnik of the Far East Branch of the Russian Academy of Sciences, 6, pp. 32-41 (in Russian).
  32. Wanninkhof, R., 2014. Relationship between Wind Speed and Gas Exchange over the Ocean Revisited. Limnology and Oceanography, 12(6), pp. 351-362. doi:10.4319/lom.2014.12.351
  33. Wiesenburg, D.A. and Guinasso Jr., N.L., 1979. Equilibrium Solubilities of Methane, Carbon Monoxide, and Hydrogen in Water and Sea Water. Journal of Chemical and Engineering Data, 24(4), pp. 356-360. doi:10.1021/je60083a006
  34. Andreeva, I.B., 1999. Sound Scattering Layers as Acoustic Inhomogeneities in the Ocean. Akusticheskij Zhurnal, 45(4), pp. 437-444 (in Russian).
  35. McInnes, A.M., Khoosal, A., Murrell, B., Merkle, D., Lacerda, M., Nyengera, R., Coetzee, J. C., Edwards, L.C., Ryan, P.G. [et al.], 2015. Recreational Fish-Finders–An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey. PLoS ONE, 10(11), e0140936. doi:10.1371/journal.pone.0140936
  36. Brough, T., Rayment, W. and Dawson, S., 2019. Using a Recreational Grade Echosounder to Quantify the Potential Prey Field of Coastal Predators. PLoS ONE, 14(5), e0217013. doi:10.1371/journal.pone.0217013
  37. Makarov, M.M., Kucher, K.M. and Naumova, E.Yu., 2019. Vertical Distribution of Zooplankton after Rapid Change in Temperature and Chlorophyll Concentration. Limnology and Freshwater Biology, (1), pp. 177-180. doi:10.31951/2658-3518-2019-A-1-177
  38. Bulanov, V.A., 2008. On the Estimation of Biomass Distribution in an Active Layer of Ocean Using the Data of Sound Scattering. Underwater Investigations and Robotics, 1(5), pp. 58-65 (in Russian).
  39. Artemov, Yu.G., 2006. Software Support for Investigation of Natural Methane Seeps by Hydroacoustic Method. Marine Ecological Journal, 5(1), pp. 57-71.
  40. Lein, A.Yu. and Ivanov M.V., 2009. Biogeochemical Cycle of Methane in the Ocean. Moscow: Nauka, 576 p. (in Russian).
  41. Izhitskaya, E.S., Egorov, A.V., Izhitskiy, A.S., Möller, O.O. and Zavialov, P.O., 2022. Dissolved Methane in Coastal Waters of the Northeastern Black Sea. Water, 14(5), 732. doi:10.3390/w14050732
  42. Grilli, R., Birot, D., Schumacher, M., Paris, J.-D., Blouzon, C., Donval, J.P., Guyader, V., Leau, H., Giunta, T. [et al.], 2021. Inter-Comparison of the Spatial Distribution of Methane in the Water Column from Seafloor Emissions at Two Sites in the Western Black Sea Using a Multi-Technique Approach. Frontiers in Earth Science, 9, 626372. doi:10.3389/feart.2021.626372
  43. Sommer, S., Schmidt, M. and Linke, P., 2015. Continuous Inline Mapping of a Dissolved Methane Plume at a Blowout Site in the Central North Sea UK Using a Membrane Inlet Mass Spectrometer – Water Column Stratification Impedes Immediate Methane Release into the Atmosphere. Marine and Petroleum Geology, 68(B), pp. 766-775. doi:10.1016/j.marpetgeo.2015.08.020

Download the article (PDF)