Phase Shifts in the Counter-Interaction of Shallow Water Waves
A. A. Rodin1, ✉, N. A. Rodina2, A. Yu. Trusova3, E. N. Pelinovsky1, 4
1 Nizhny Novgorod State Technical University n. a. R. E. Alekseev, Nizhny Novgorod, Russian Federation
2 National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
3 Linguistics University of Nizhny Novgorod n. a. N. A. Dobrolyubov, Nizhny Novgorod, Russian Federation
4 Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russian Federation
✉ e-mail: xmrarro@gmail.com
Abstract
Purpose. The work is aimed at numerical studying and describing the wave effects arising from the counter-interaction of different polarity single pulses within the framework of the Boussinesq type equation system with regard to dispersion in a constant depth basin.
Methods and Results. To simulate the scenarios of the long wave pulse interaction, the CLAWPACK software package was used. It included the hybrid method for numerical solving the equation system which, in its turn, comprised the method of finite volumes and finite differences. The results were compared to the numerical solutions obtained earlier by using a non-dispersive nonlinear system of shallow water equations.
Conclusions. The fundamental wave phase shift is studied in its interaction with the counter-propagating pulses of different polarity. It is shown that the phase shift increases with the initial pulse amplitude growth. The dispersion influence is manifested in a single wave transformation into an undular bore. The study novelty consists in detecting and demonstrating such nonlinear effects as the phase shifts in the long wave counter-interaction within the framework of the nonlinear shallow water numerical model including the dispersion terms.
Keywords
long waves, numerical experiment, Boussinesq equations, wave interaction
Acknowledgements
The represented results were obtained with the support of the RSF grant 22-17-00153.
Original russian text
Original Russian Text © A. A. Rodin, N. A. Rodina, A. Yu. Trusova, E. N. Pelinovsky, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 3, pp. 289-298 (2023)
For citation
Rodin, A.A., Rodina, N.A., Trusova, A.Yu. and Pelinovsky, E.N., 2023. Phase Shifts in the Counter-Interaction of Shallow Water Waves. Physical Oceanography, 30(3), pp. 265-273. doi:10.29039/1573-160X-2023-3-265-273
DOI
10.29039/1573-160X-2023-3-265-273
References
- Stoker, J.J., 1957. Water Waves: The Mathematical Theory with Applications. New York: Interscience Publishers, 567 p.
- Lighthill, M.J., 1978. Waves in Fluids. New York: Cambridge University Press, 504 p.
- Whitham, G.B., 1974. Linear and Nonlinear Waves. New York: John Wiley & Sons, 636 p.
- Tinti, S. and Tonini, R., 2005. Analytical Evolution of Tsunamis Induced by Near-Shore Earthquakes on a Constant-Slope Ocean. Journal of Fluid Mechanics, 535, pp. 33-64. doi:10.1017/S0022112005004532
- Berger, M.J., George, D.L., LeVeque, R.J. and Mandli, K.T., 2011. The GeoClaw Software for Depth-Averaged Flows with Adaptive Refinement. Advances in Water Resources, 34(9), pp. 1195-1206. doi:10.1016/j.advwatres.2011.02.016
- Pelinovsky, E.N., 1996. Tsunami Waves Hydrodynamics. Nizhniy Novgorod: IAP RAS Publ., 275 p. (in Russian).
- Pelinovsky, E.N., 2007. Nonlinear-Dispersive Theory of Tsunami Waves: Outlook after the Hazardous Indian Ocean Tsunami. In: A. V. Gaponov-Grekhov and V. I. Nekorkin, eds., 2007. Nonlinear Waves’ 2006. Nizhniy Novgorod: IAP RAS Publ., pp. 393-407 (in Russian).
- Glimsdal, S., Pedersen, G.K., Harbitz, C.B. and Løvholt, F., 2013. Dispersion of Tsunamis: Does It Really Matter? Natural Hazards and Earth System Sciences, 13(6), pp. 1507-1526. doi:10.5194/nhess-13-1507-2013
- Green, A.E. and Naghdi, P.M., 1976. A Derivation of Equations for Wave Propagation in Water of Variable Depth. Journal of Fluid Mechanics, 78(2), pp. 237-246. doi:10.1017/S0022112076002425
- Pelinovsky, E.N., Kuznetsov, K.I., Touboul, J. and Kurkin, A.A., 2015. Bottom Pressure Caused by Passage of a Solitary Wave within the Strongly Nonlinear Green-Naghdi Model. Doklady Physics, 60(4), pp. 171-174. doi:10.1134/S1028335815040035
- Peregrine, D.H., 1966. Calculations of the Development of an Undular Bore. Journal of Fluid Mechanics, 25(2), pp. 321-330. doi:10.1017/S0022112066001678
- Madsen, P.A., Bingham, H.B. and Schäffer, H.A., 2003. Boussinesq-Type Formulations for Fully Nonlinear and Extremely Dispersive Water Waves: Derivation and Analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2033), pp. 1075-1104. doi:10.1098/rspa.2002.1067
- Brocchini, M., 2013. A Reasoned Overview on Boussinesq-Type Models: The Interplay between Physics, Mathematics and Numerics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2160), 20130496. doi:10.1098/rspa.2013.0496
- Martins, K., Bonneton, P., Mouragues, A. and Castelle, B., 2020. Non-Hydrostatic, Non-Linear Processes in the Surf Zone. Journal of Geophysical Research: Oceans, 125(2), e2019JC015521. doi:10.1029/2019JC015521
- Zaytsev, A., Kurkin, A., Pelinovsky, E. and Yalciner, A.C., 2019. Numerical Tsunami Model NAMI-DANCE. Science of Tsunami Hazards, 38(4), pp. 151-168.
- Didenkulova, I. and Pelinovsky, E., 2011. Rogue Waves in Nonlinear Hyperbolic Systems (Shallow-Water Framework). Nonlinearity, 24(3), R1. doi:10.1088/0951-7715/24/3/R01
- Didenkulova, I., Pelinovsky, E. and Rodin, A., 2011. Nonlinear Interaction of Large-Amplitude Unidirectional Waves in Shallow Water. Estonian Journal of Engineering, 17(4), pp. 289-300. doi:10.3176/eng.2011.4.02
- Cooker, M.J., Weidman, P.D. and Bale, D.S., 1997. Reflection of a High-Amplitude Solitary Wave at a Vertical Wall. Journal of Fluid Mechanics, 342, pp. 141-158. doi:10.1017/S002211209700551X
- Chambarel, J., Kharif, C. and Touboul, J., 2009. Head-On Collision of Two Solitary Waves and Residual Falling Jet Formation. Nonlinear Processes in Geophysics, 16(1), pp. 111-122. doi:10.5194/npg-16-111-2009
- Kim, J., Pedersen, G.K., Løvholt, F. and LeVeque, R.J., 2017. A Boussinesq Type Extension of the GeoClaw Model – A Study of Wave Breaking Phenomena Applying Dispersive Long Wave Models. Coastal Engineering, 122, pp. 75-86. doi:10.1016/j.coastaleng.2017.01.005
- Courant, R. and Friedrichs, K.O., 1948. Supersonic Flow and Shock Waves. New-York: Interscience Publishers Inc., 464 p.
- Pelinovsky, E.N. and Rodin, A.A., 2012. Transformation of a Strongly Nonlinear Wave in a Shallow-Water Basin. Izvestiya, Atmospheric and Oceanic Physics, 48(3), pp. 343-349. doi:10.1134/S0001433812020089
- Brühl, M., Prins, P., Ujvary, S., Barranco, I., Wahls, S. and Liu, P.L.-F., 2022. Comparative Analysis of Bore Propagation over Long Distances Using Conventional Linear and KdV-Based Nonlinear Fourier Transform. Wave Motion, 111, 102905. doi:10.1016/j.wavemoti.2022.102905
- Rodin, A.A., Rodina, N.A., Kurkin, A.A. and Pelinovsky, E.N., 2019. Influence of Nonlinear Interaction on the Evolution of Waves in a Shallow Basin. Izvestiya, Atmospheric and Oceanic Physics, 55(4), pp. 374-379. doi:10.1134/S0001433819040108