Phase Shifts in the Counter-Interaction of Shallow Water Waves

A. A. Rodin1, ✉, N. A. Rodina2, A. Yu. Trusova3, E. N. Pelinovsky1, 4

1 Nizhny Novgorod State Technical University n. a. R. E. Alekseev, Nizhny Novgorod, Russian Federation

2 National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation

3 Linguistics University of Nizhny Novgorod n. a. N. A. Dobrolyubov, Nizhny Novgorod, Russian Federation

4 Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russian Federation

e-mail: xmrarro@gmail.com

Abstract

Purpose. The work is aimed at numerical studying and describing the wave effects arising from the counter-interaction of different polarity single pulses within the framework of the Boussinesq type equation system with regard to dispersion in a constant depth basin.

Methods and Results. To simulate the scenarios of the long wave pulse interaction, the CLAWPACK software package was used. It included the hybrid method for numerical solving the equation system which, in its turn, comprised the method of finite volumes and finite differences. The results were compared to the numerical solutions obtained earlier by using a non-dispersive nonlinear system of shallow water equations.

Conclusions. The fundamental wave phase shift is studied in its interaction with the counter-propagating pulses of different polarity. It is shown that the phase shift increases with the initial pulse amplitude growth. The dispersion influence is manifested in a single wave transformation into an undular bore. The study novelty consists in detecting and demonstrating such nonlinear effects as the phase shifts in the long wave counter-interaction within the framework of the nonlinear shallow water numerical model including the dispersion terms.

Keywords

long waves, numerical experiment, Boussinesq equations, wave interaction

Acknowledgements

The represented results were obtained with the support of the RSF grant 22-17-00153.

Original russian text

Original Russian Text © A. A. Rodin, N. A. Rodina, A. Yu. Trusova, E. N. Pelinovsky, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 3, pp. 289-298 (2023)

For citation

Rodin, A.A., Rodina, N.A., Trusova, A.Yu. and Pelinovsky, E.N., 2023. Phase Shifts in the Counter-Interaction of Shallow Water Waves. Physical Oceanography, 30(3), pp. 265-273. doi:10.29039/1573-160X-2023-3-265-273

DOI

10.29039/1573-160X-2023-3-265-273

References

  1. Stoker, J.J., 1957. Water Waves: The Mathematical Theory with Applications. New York: Interscience Publishers, 567 p.
  2. Lighthill, M.J., 1978. Waves in Fluids. New York: Cambridge University Press, 504 p.
  3. Whitham, G.B., 1974. Linear and Nonlinear Waves. New York: John Wiley & Sons, 636 p.
  4. Tinti, S. and Tonini, R., 2005. Analytical Evolution of Tsunamis Induced by Near-Shore Earthquakes on a Constant-Slope Ocean. Journal of Fluid Mechanics, 535, pp. 33-64. doi:10.1017/S0022112005004532
  5. Berger, M.J., George, D.L., LeVeque, R.J. and Mandli, K.T., 2011. The GeoClaw Software for Depth-Averaged Flows with Adaptive Refinement. Advances in Water Resources, 34(9), pp. 1195-1206. doi:10.1016/j.advwatres.2011.02.016
  6. Pelinovsky, E.N., 1996. Tsunami Waves Hydrodynamics. Nizhniy Novgorod: IAP RAS Publ., 275 p. (in Russian).
  7. Pelinovsky, E.N., 2007. Nonlinear-Dispersive Theory of Tsunami Waves: Outlook after the Hazardous Indian Ocean Tsunami. In: A. V. Gaponov-Grekhov and V. I. Nekorkin, eds., 2007. Nonlinear Waves’ 2006. Nizhniy Novgorod: IAP RAS Publ., pp. 393-407 (in Russian).
  8. Glimsdal, S., Pedersen, G.K., Harbitz, C.B. and Løvholt, F., 2013. Dispersion of Tsunamis: Does It Really Matter? Natural Hazards and Earth System Sciences, 13(6), pp. 1507-1526. doi:10.5194/nhess-13-1507-2013
  9. Green, A.E. and Naghdi, P.M., 1976. A Derivation of Equations for Wave Propagation in Water of Variable Depth. Journal of Fluid Mechanics, 78(2), pp. 237-246. doi:10.1017/S0022112076002425
  10. Pelinovsky, E.N., Kuznetsov, K.I., Touboul, J. and Kurkin, A.A., 2015. Bottom Pressure Caused by Passage of a Solitary Wave within the Strongly Nonlinear Green-Naghdi Model. Doklady Physics, 60(4), pp. 171-174. doi:10.1134/S1028335815040035
  11. Peregrine, D.H., 1966. Calculations of the Development of an Undular Bore. Journal of Fluid Mechanics, 25(2), pp. 321-330. doi:10.1017/S0022112066001678
  12. Madsen, P.A., Bingham, H.B. and Schäffer, H.A., 2003. Boussinesq-Type Formulations for Fully Nonlinear and Extremely Dispersive Water Waves: Derivation and Analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2033), pp. 1075-1104. doi:10.1098/rspa.2002.1067
  13. Brocchini, M., 2013. A Reasoned Overview on Boussinesq-Type Models: The Interplay between Physics, Mathematics and Numerics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2160), 20130496. doi:10.1098/rspa.2013.0496
  14. Martins, K., Bonneton, P., Mouragues, A. and Castelle, B., 2020. Non-Hydrostatic, Non-Linear Processes in the Surf Zone. Journal of Geophysical Research: Oceans, 125(2), e2019JC015521. doi:10.1029/2019JC015521
  15. Zaytsev, A., Kurkin, A., Pelinovsky, E. and Yalciner, A.C., 2019. Numerical Tsunami Model NAMI-DANCE. Science of Tsunami Hazards, 38(4), pp. 151-168.
  16. Didenkulova, I. and Pelinovsky, E., 2011. Rogue Waves in Nonlinear Hyperbolic Systems (Shallow-Water Framework). Nonlinearity, 24(3), R1. doi:10.1088/0951-7715/24/3/R01
  17. Didenkulova, I., Pelinovsky, E. and Rodin, A., 2011. Nonlinear Interaction of Large-Amplitude Unidirectional Waves in Shallow Water. Estonian Journal of Engineering, 17(4), pp. 289-300. doi:10.3176/eng.2011.4.02
  18. Cooker, M.J., Weidman, P.D. and Bale, D.S., 1997. Reflection of a High-Amplitude Solitary Wave at a Vertical Wall. Journal of Fluid Mechanics, 342, pp. 141-158. doi:10.1017/S002211209700551X
  19. Chambarel, J., Kharif, C. and Touboul, J., 2009. Head-On Collision of Two Solitary Waves and Residual Falling Jet Formation. Nonlinear Processes in Geophysics, 16(1), pp. 111-122. doi:10.5194/npg-16-111-2009
  20. Kim, J., Pedersen, G.K., Løvholt, F. and LeVeque, R.J., 2017. A Boussinesq Type Extension of the GeoClaw Model – A Study of Wave Breaking Phenomena Applying Dispersive Long Wave Models. Coastal Engineering, 122, pp. 75-86. doi:10.1016/j.coastaleng.2017.01.005
  21. Courant, R. and Friedrichs, K.O., 1948. Supersonic Flow and Shock Waves. New-York: Interscience Publishers Inc., 464 p.
  22. Pelinovsky, E.N. and Rodin, A.A., 2012. Transformation of a Strongly Nonlinear Wave in a Shallow-Water Basin. Izvestiya, Atmospheric and Oceanic Physics, 48(3), pp. 343-349. doi:10.1134/S0001433812020089
  23. Brühl, M., Prins, P., Ujvary, S., Barranco, I., Wahls, S. and Liu, P.L.-F., 2022. Comparative Analysis of Bore Propagation over Long Distances Using Conventional Linear and KdV-Based Nonlinear Fourier Transform. Wave Motion, 111, 102905. doi:10.1016/j.wavemoti.2022.102905
  24. Rodin, A.A., Rodina, N.A., Kurkin, A.A. and Pelinovsky, E.N., 2019. Influence of Nonlinear Interaction on the Evolution of Waves in a Shallow Basin. Izvestiya, Atmospheric and Oceanic Physics, 55(4), pp. 374-379. doi:10.1134/S0001433819040108

Download the article (PDF)