Trends and Regional Features of Variability of the Northeast Pacific Ocean Thermal Conditions North of 30°N over the Last Four Decades

I. D. Rostov, E. V. Dmitrieva, N. I. Rudykh

V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation

e-mail: rostov@poi.dvo.ru

Abstract

Purpose. The study is purposed at revealing the regional features of modern climatic changes in water temperature in the northeastern extratropical zone of the Pacific Ocean, at assessing the characteristics of temperature trends on the ocean surface and in its upper layer and their relationship with the large- scale processes in the ocean and atmosphere.

Methods and Results. Based on the NOAA climatic data sets, and using the statistical methods of analysis and the apparatus of empirical orthogonal functions, the characteristics of the interannual variability of water temperature on the surface and in the upper 1000-meter layer were determined in different regions of the area under study. Temperature trends, correlations with the influencing factors and their statistical significance for some 20-year periods of previous 40 years were quantitatively assessed.

Conclusions. In the first decades of the 21st century, the warming trends are explicit on the surface and in the upper 200-meter layer of the northeastern and central regions of the area. As compared to the previous 20-year period, the magnitude of positive SST trends increased, on average, by about 4 times over the entire water area. In course of the past two decades, the heat content of the upper 200- meter layer increased by 5% and that of the whole 1000-meter layer – by 2%, which is 1.5 times less than in the northwestern sector of the Pacific extratropical zone where, unlike the surface, the rate of water column warming was higher. As for the area under study, on the whole, the correlations between the heat content fluctuations in the upper 200-meter ocean layer and the changes in influencing factors are manifested through the climatic indices NPGO, PDO, NP, PNA, SOI, AD and the atmospheric pressure gradients between the leading centers of the atmosphere action.

Keywords

northeastern part of the Pacific Ocean, extratropical zone, modern climate changes, regional features, water temperature, heat content, warming trends, climate indices, correlations

Acknowledgements

The work was carried out within the framework of the state assignment of POI FEB RAS on theme 0211-2021-0008. State registration No. 121021700346-7. The authors are thankful to the program developers for the possibility to use the climatic data posted on the NOAA sites. The authors are grateful to the reviewer for constructive comments.

Original russian text

Original Russian Text © I. D. Rostov, E. V. Dmitrieva, N. I. Rudykh, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 4 (2023)

For citation

Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2023. Trends and Regional Features of Variability of the Northeast Pacific Ocean Thermal Conditions North of 30°N over the Last Four Decades. Physical Oceanography, 30(4), pp. 410-427.

References

  1. Belkin, I., Krishfield, R. and Honjo, S., 2002. Decadal Variability of the North Pacific Polar Front: Subsurface Warming Versus Surface Cooling. Geophysical Research Letters, 29(9), pp. 65-1–65-4. doi:10.1029/2001GL013806
  2. Saito, H., Suga, T., Hanawa, K. and Shikama, N., 2011. The Transition Region Mode Water of the North Pacific and Its Rapid Modification. Journal of Physical Oceanography, 41(9), pp. 1639-1658. doi:10.1175/2011JPO4346.1
  3. Favorite, F., Dodimead, A.J. and Nasu, R., 1976. Oceanography of the Subarctic Pacific Region, 1960-71. International North Pacific Fisheries Commission Bulletin No. 33. Tokyo, Japan: Kenkyusha Printing Company, 187 p. Available at: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/17465.pdf [Accessed: 20 October 2022].
  4. Qiu, B., 2002. Large-Scale Variability in the Midlatitude Subtropical and Subpolar North Pacific Ocean: Observations and Causes. Journal of Physical Oceanography, 32(1), pp. 353- 375. doi:10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2
  5. Kuroda, H., Suyama, S., Miyamoto, H., Setou, T. and Nakanowatari, T., 2021. Interdecadal Variability of the Western Subarctic Gyre in the North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 169, 103461. doi:10.1016/j.dsr.2020.103461
  6. Barnett, T.P., 1981. On the Nature and Causes of Large-Scale Thermal Variability in the Central North Pacific Ocean. Journal of Physical Oceanography, 11(7), pp. 887-904. doi:10.1175/1520-0485(1981)011<0887:OTNACO>2.0.CO;2
  7. Kwon, E.Y., Deutsch, C., Xie, S.-P., Schmidtko, S. and Cho, Y.-K., 2016. The North Pacific Oxygen Uptake Rates over the Past Half Century. Journal of Climate, 29(1), pp. 61-76. doi:10.1175/JCLI-D-14-00157.1
  8. Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2021. Climatic Changes of Thermal Conditions in the Pacific Subarctic at the Modern Stage of Global Warming. Physical Oceanography, 28(2), pp. 149-164. doi:10.22449/1573-160X-2021-2-149-164
  9. Archer, C.L. and Caldeira, K., 2008. Historical Trends in the Jet Streams. Geophysical Research Letters, 35(8), L08803. doi:10.1029/2008GL033614
  10. Nieves, V., Willis, J.K. and Patzert, W.C., 2015. Recent Hiatus Caused by Decadal Shift in Indo-Pacific Heating. Science, 349(6247), pp. 532-535. doi:10.1126/science.aaa4521
  11. Trenberth, K.E. and Fasullo, J.T., 2013. An Apparent Hiatus in Global Warming? Earth’s Future, 1(1), pp. 19-32. doi:10.1002/2013EF000165
  12. Amaya, D.J., Miller, A.J., Xie, S.-P. and Kosaka, Y., 2020. Physical Drivers of the Summer 2019 North Pacific Marine Heatwave. Nature Communications, 11(1), 1903. doi:10.1038/s41467-020-15820-w
  13. Bond, N.A., Cronin, M.F., Freeland, H. and Mantua, N., 2015. Causes and Impacts of the 2014 Warm Anomaly in the NE Pacific. Geophysical Research Letters, 42(9), pp. 3414-3420. doi:10.1002/2015GL063306
  14. Loeb, N.G., Thorsen, T.J., Norris, J.R., Wang, H. and Su, W., 2018. Changes in Earth’s Energy Budget during and after the ”Pause” in Global Warming: An Observational Perspective. Climate, 6(3), 62. doi:10.3390/cli6030062
  15. Ross, T., Jackson, J. and Hannah, C., 2021. The Northeast Pacific: Update on Marine Heatwave Status and Trends. PICES Press, 29(1), pp. 46-48. Available at: https://meetings.pices.int/publications/pices-press/volume29/PPJan2021.pdf#page=46 [Accessed: 20 October 2022].
  16. Di Lorenzo, E. and Mantua, N., 2016. Multi-Year Persistence of the 2014/15 North Pacific Marine Heatwave. Nature Climate Change, 6(11), pp. 1042-1047. doi:10.1038/nclimate3082
  17. Zhao, Y., Newman, M., Capotondi, A., Di Lorenzo, E. and Sun, D., 2021. Removing the Effects of Tropical Dynamics from North Pacific Climate Variability. Journal of Climate, 34(23), pp. 9249-9265. doi:10.1175/JCLI-D-21-0344.1
  18. Rostov, I.D. and Dmitrieva, E.V., 2021. Regional Features of International Variations in Water Temperature in the Subarctic Pacific. Russian Meteorology and Hydrology, 46(2), pp. 106-114. doi:10.3103/S1068373921020059
  19. Meehl, G.A., Hu, A., Arblaster, M., Fasullo, J. and Trenberth, K.E., 2013. Externally Forced and Internally Generated Decadal Climate Variability Associated with the Interdecadal Pacific Oscillation. Journal of Climate, 26(18), pp. 7298-7310. doi:10.1175/JCLI-D-12-00548.1
  20. Hartmann, B. and Wendler, G., 2005. The Significance of the 1976 Pacific Climate Shift in the Climatology of Alaska. Journal of Climate, 18(22), pp. 4824-4839. doi:10.1175/JCLI3532.1
  21. Na, H., Kim, K.-Y., Minobe, S. and Sasaki, Y.N., 2018. Interannual to Decadal Variability of the Upper-Ocean Heat Content in the Western North Pacific and Its Relationship to Oceanic and Atmospheric Variability. Journal of Climate, 31(13), pp. 5107-5125. doi:10.1175/JCLI-D- 17-0506.1
  22. Penny, S.G., Behringer, D.W., Carton, J.A. and Kalnay, E., 2015. A Hybrid Global Ocean Data Assimilation System at NCEP. Monthly Weather Review, 143(11), pp. 4660-4677. doi:10.1175/MWR-D-14-00376.1
  23. Boyer, T.B., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Locarnini, R.A., Mishonov, A.V., Paver, C.R., Reagan, J.R. [et al.], 2018. World Ocean Database 2018. NOAA Atlas NESDIS 87. Silver Spring, MD: U.S. Department of Commerce, 207 p. Available at: https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf [Accessed: 20 October 2022].
  24. Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2023. Interannual Variability of Thermal Characteristics of the Upper 1000-meter Layer in the Extratropical Zone of the Northwestern Part of the Pacific Ocean at the Turn of the XX-XXI Centuries. Physical Oceanography, 30(2), pp. 141-159. doi:10.29039/1573-160X-2023-2-141-159
  25. Luchin, V.A. and Matveev, V.I., 2016. Interannual Variability of Thermal State of the Cold Subsurface Layer in the Okhotsk Sea. Izvestiya TINRO, 187(4), pp. 205-216. doi:10.26428/1606-9919-2016-187-205-216 (in Russian).
  26. Gan, B., Wu, L., Jia, F., Li, S., Cai, W., Nakamura, H., Alexander, M.A. and Miller, A.J., 2017. On the Response of the Aleutian Low to Greenhouse Warming. Journal of Climate, 30(10), pp. 3907-3925. doi:10.1175/JCLI-D-15-0789.1
  27. Xiu, P., Chai, F., Curchitser, E.N. and Castruccio, F.S., 2018. Future Changes in Coastal Upwelling Ecosystems with Global Warming: The Case of the California Current System. Scientific Reports, 8, 2866. doi:10.1038/s41598-018-21247-7
  28. Overland, J.E., Adams, J.M. and Bond, N.A., 1999. Decadal Variability of the Aleutian Low and Its Relation to High-Latitude Circulation. Journal of Climate, 12(5), pp. 1542-1548. doi:10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2
  29. Stephens, C., Levitus, S., Antonov, J. and Boyer, T.P., 2001. On the Pacific Ocean Regime Shift. Geophysical Research Letters, 28(19), pp. 3721-3724. doi:10.1029/2000GL012813
  30. Hu, Z., Hu, A. and Rosenbloom, N., 2020. Budgets for Decadal Variability in Pacific Ocean Heat Content. Journal of Climate, 33(17), pp. 7663-7678. doi:10.1175/JCLI-D-19-0360.1
  31. Kelly, K.A., Small, R.J., Samelson, R.M., Qui, B., Joyce, T.M., Kwon, Y.-O. and Cronin, M.F., 2010. Western Boundary Currents and Frontal Air–Sea Interaction: Gulf Stream and Kuroshio Extension. Journal of Climate, 23(21), pp. 5644-5667. doi:10.1175/2010JCLI3346.1
  32. Ceballos, L.I., Di Lorenzo, E., Hoyos, C.D., Schneider, N. and Taguchi, B., 2009. North Pacific Gyre Oscillation Synchronizes Climate Fluctuations in the Eastern and Western Boundary Systems. Journal of Climate, 22(19), pp. 5163-5174. doi:10.1175/2009JCLI2848.1
  33. Deser, C., Phillips, A.S. and Hurrell, J.W., 2004. Pacific Interdecadal Climate Variability: Linkages between the Tropics and the North Pacific during Boreal Winter since 1900. Journal of Climate, 17(16), pp. 3109-3124. doi:10.1175/1520-0442(2004)017< 3109:PICVLB>2.0.CO;2

Download the article (PDF)