Average Climatic Characteristics of Internal Waves in the Sea of Japan Based on the WOA18 Atlas

M. V. Kokoulina1, 2, O. E. Kurkina1, T. G. Talipova2, 3, A. A. Kurkin1, 2, ✉, E. N. Pelinovsky2, 3, 4

1 Nizhny Novgorod State Technical University n.a. R. E. Alekseev, Nizhny Novgorod, Russian Federation

2 V. I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation

3 A. V. Gaponov- Grekhov Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russian Federation

4 HSE University, Moscow, Russian Federation

e-mail: aakurkin@gmail.com

Abstract

Purpose. The study is aimed at constructing the atlas, or a set of charts, for kinematic and nonlinear parameters of internal waves of the lowest mode in the Sea of Japan for mapping the region according to possible wave forms, and for determining polarities (elevation or depression) and limiting amplitudes of solitary internal waves.

Methods and Results. Based on hydrological data for the long-term average seasons derived from the climatological atlas WOA18, the seasonal features of density stratification of the Sea of Japan waters and the related kinematic and nonlinear parameters of internal waves governed by the environment are considered. For this purpose, the numerical solutions of a linear boundary value problem for internal waves are constructed that results in determining the wave phase velocities and the vertical structure (mode) of the wave fields for each calculation point. This basis allows numerical construction of the remaining characteristics, namely, the dispersion parameter, the quadratic and cubic nonlinearity parameters which make it possible to classify the localized non-radiating internal waves.

Conclusions. The atlas is intended both for express assessing the internal wave characteristics, forecasting possible scenarios of their generation and transformation, and for more detailed modelling of their propagation. The estimates obtained can also be used to analyse the effect of internal waves on the propagation of acoustic signals in the water column, the redistribution of suspended particles including nutrients and living organisms, and the transport of bottom sediments.

Keywords

density stratification, internal waves, Sea of Japan

Acknowledgements

The work was supported by the Laboratory of Nonlinear Hydrophysics and Natural Disasters of the V. I. Il'ichev Pacific Oceanological Institute, FEB of RAS, grant of the Ministry of Science and Higher Education of Russian Federation (agreement No. 075-15-2022-1127 dated July 1, 2022).

Original russian text

Original Russian Text © The Authors, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 5 (2023)

For citation

Kokoulina, M.V., Kurkina, O.E., Talipova, T.G., Kurkin, A.A. and Pelinovsky, E.N., 2023. Average Climatic Characteristics of Internal Waves in the Sea of Japan Based on the WOA18 Atlas. Physical Oceanography, 30(5), pp. 563-580.

References

  1. Garwood, J.C., Musgrave, R.C. and Lucas, A.J., 2020. Life in Internal Waves. Oceanography, 33(3), pp. 38-49. doi:10.5670/oceanog.2020.313
  2. Wang, T., Huang, X., Zhao, W., Zheng, S., Yang, Y. and Tian, J., 2022. Internal Solitary Wave Activities near the Indonesian Submarine Wreck Site Inferred from Satellite Images. Journal of Marine Science and Engineering, 10(2), 197. doi:10.3390/jmse10020197
  3. Li, J., Zhang, Q. and Chen, T., 2021. Numerical Investigation of Internal Solitary Wave Forces on Submarines in Continuously Stratified Fluids. Journal of Marine Science and Engineering, 9(12), 1374. doi:10.3390/jmse9121374
  4. Chen, M., Chen, K., You, Y.-X. and Yu, H.-T., 2018. Experimental Study of Forces on a Multi-Column Floating Platform in Internal Solitary Waves. Applied Ocean Research, 78, pp. 192-200. doi:10.1016/j.apor.2018.06.014
  5. Chin-Bing, S.A., Warn-Varnas, A., King, D.B., Hawkins, J. and Lamb, K., 2009. Effects on Acoustics Caused by Ocean Solitons, Part B: Acoustics. Nonlinear Analysis: Theory, Methods & Applications, 71(12), pp. e2194-e2204. doi:10.1016/j.na.2009.04.069
  6. Duda, T.F., Lynch, J.F., Irish, J.D., Beardsley, R.C., Ramp, S.R., Chiu, C.-S., Tang, T.Y. and Yang, Y.-J., 2004. Internal Tide and Nonlinear Internal Wave Behavior at the Continental Slope in the Northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4), pp. 1105-1130. doi:10.1109/JOE.2004.836998
  7. Shroyer, E.L., Moum, J.N. and Nash, J.D., 2010. Mode 2 Waves on the Continental Shelf: Ephemeral Components of the Nonlinear Internal Wavefield. Journal of Geophysical Research: Oceans, 115(C7), C07001. doi:10.1029/2009JC005605
  8. Talipova, T., Kurkina, O., Kurkin, A., Didenkulova, E. and Pelinovsky, E., 2020. Internal Wave Breathers in the Slightly Stratified Fluid. Microgravity Science and Technology, 32(1), pp. 69-77. doi:10.1007/s12217-019-09738-2
  9. Dolgikh, G.I., Novotryasov, V.V., Yaroshchuk, I.O. and Permyakov, M.S., 2018. Intense Undular Bores on the Autumn Pycnocline of Shelf Waters of the Peter the Great Bay (Sea of Japan). Doklady Earth Sciences, 479(1), pp. 379-383. doi:10.1134/S1028334X18030157
  10. Lee, J.H., Lozovatsky, I., Jang, S.-T., Jang, Ch.J., Hong, C.S. and Fernando, H.J.S., 2006. Episodes of Nonlinear Internal Waves in the Northern East China Sea. Geophysical Research Letters, 33(18), L18601. doi:10.1029/2006GL027136
  11. Kurkina, O., Pelinovsky, E., Talipova, T. and Soomere, T., 2011. Mapping the Internal Wave Field in the Baltic Sea in the Context of Sediment Transport in Shallow Water. Journal of Coastal Research, SI 64, pp. 2042-2047.
  12. Kurkina, O., Rouvinskaya, E., Talipova, T. and Soomere, T., 2017. Propagation Regimes and Populations of Internal Waves in the Mediterranean Sea Basin. Estuarine, Coastal and Shelf Science, 185, pp. 44-54. doi:10.1016/j.ecss.2016.12.003
  13. Kurkina, O., Talipova, T., Soomere, T., Giniyatullin, A. and Kurkin, A., 2017. Kinematic Parameters of Internal Waves of the Second Mode in the South China Sea. Nonlinear Processes in Geophysics, 24(4), pp. 645-660. doi:10.5194/npg-24-645-2017
  14. Kurkina, O.E., Talipova, T.G., Soomere, T., Kurkin, A.A. and Rybin, A.V., 2017. The Impact of Seasonal Changes in Stratification on the Dynamics of Internal Waves in the Sea of Okhotsk. Estonian Journal of Earth Sciences, 66(4), pp. 238-255. doi:10.3176/earth.2017.20
  15. Filatov, N.N., 2019. The Modern State and Perspective Investigations of Hydrophysical Processes and Ecosystems of Inland Waters (a Review). Fundamentalnaya i Prikladnaya Gidrofizika, 12(1), pp. 3-14. doi:10.7868/S2073667319010015 (in Russian).
  16. Lavrova, O.Yu., Mityagina, M.I. and Sabinin K.D., 2011. Study of Internal Wave Generation and Propagation Features in Non-Tidal Seas Based on Satellite Synthetic Aperture Radar Data. Doklady Earth Sciences, 436(1), pp. 165-169. doi:10.1134/S1028334X11010272
  17. Grimshaw, R., Pelinovsky, E., Talipova, T. and Kurkin, A., 2004. Simulation of the Transformation of Internal Solitary Waves on Oceanic Shelves. Journal of Physical Oceanography, 34(12), pp. 2774-2791. doi:10.1175/JPO2652.1
  18. Zhang, W., Didenkulova, I., Kurkina, O., Cui, Y., Haberkern, J., Aepfler, R., Santos, A.I., Zhang, H. and Hanebuth, T.J.J., 2019. Internal Solitary Waves Control Offshore Extension of Mud Depocenters on the NW Iberian Shelf. Marine Geology, 409, pp. 15-30. doi:10.1016/j.margeo.2018.12.008

Download the article (PDF)