Analysis of Long-Term Variability of Hydrodynamic Fields in the Upper 200-Meter Layer of the Black Sea Based on the Reanalysis Results

V. L. Dorofeev, L. I. Sukhikh

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: l.sukhikh@gmail.com

Abstract

Purpose. The research is purposed at studying the trends in the long-term evolution of hydrodynamic fields in the upper 200-m layer of the Black Sea based on the reanalysis of a 28-year period.

Methods and Results. To obtain a set of the Black Sea hydrodynamic fields for the period from 1993 to 2020, the following calculations were performed using the MHI numerical model of the Black Sea and including the assimilation of remote sensing data: the anomaly fields of the free sea surface elevation and the surface temperature derived from satellite measurements. The results of the ERA-5 atmospheric reanalysis were used as the atmospheric forcing. The evolution of temperature, salinity and current fields in the sea upper layers over the period under consideration was analyzed. The modeling results were compared to the temperature and salinity profiles obtained by the ARGO buoys in the Black Sea.

Conclusions. The results obtained demonstrate the positive trends in average temperature in different layers, an increase of heat content of the sea upper layer and a growth of average temperature in the core of the cold intermediate layer. In course of the period under study, salinity also tended to increase.

Keywords

reanalysis, circulation model, Black Sea, numerical modeling, assimilation of measurement data, satellite data

Acknowledgements

The study was carried out with the financial support of project No. 0827-2021-0002.

Original russian text

Original Russian Text © V. L. Dorofeev, L. I. Sukhikh, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 5 (2023)

For citation

Dorofeev, V.L. and Sukhikh, L.I., 2023. Analysis of Long-Term Variability of Hydrodynamic Fields in the Upper 200-Meter Layer of the Black Sea Based on the Reanalysis Results. Physical Oceanography, 30(5), pp. 581-593.

References

  1. Knysh, V.V., Kubryakov, A.I., Moiseenko, V.A., Belokopytov, V.N., Inyushina, N.V. and Korotaev, G.K., 2008. Tendencies of Variability of the Black Sea Thermohaline and Dynamic Parameters, Revealed by Reanalysis Results for the 1985–1994 Years Period. In: MHI, 2008. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: MHI. Iss. 16, pp. 279-290 (in Russian).
  2. Knysh, V.V., Korotaev, G.K., Moiseenko, V.A., Kubryakov, A.I., Belokopytov, V.N. and Inyushina, N.V., 2011. Seasonal and Interannual Variability of Black Sea Hydrophysical Fields Reconstructed from 1971–1993 Reanalysis Data. Izvestiya, Atmospheric and Oceanic Physics, 47(3), pp. 399-411. doi:10.1134/S000143381103008X
  3. Dorofeev, V.L., 2009. Modeling of Decadal Variations in the Black-Sea Ecosystem. Physical Oceanography, 19(6), pp. 400-409. doi:10.1007/s11110-010-9062-6
  4. Dorofeev, V.L., Korotaev, G.K. and Sukhikh, L.I., 2013. Study of Long-Term Variations in the Black Sea Fields Using an Interdisciplinary Physical and Biogeochemical Model. Izvestiya, Atmospheric and Oceanic Physics, 49(6), pp. 622-631. doi:10.1134/S0001433813060054
  5. Dorofeev, V.L. and Sukhikh, L.I., 2016. Analysis of Variability of the Black Sea Hydrophysical Fields in 1993–2012 Based on the Reanalysis Results. Physical Oceanography, (1), pp. 33-47. doi:10.22449/1573-160X-2016-1-33-47
  6. Demyshev, S.G. and Korotaev, G.K., 1992. [Numerical Energy-Balanced Model of the Baroclinic Currents in Ocean with Uneven Bottom on a C-Grid]. In: INM RAS, 1992. Numerical Models and Results of Calibration Calculations of Currents in the Atlantic Ocean. Moscow: Institute of Numerical Mathematics RAS, pp. 163-231 (in Russian).
  7. Suslin, V.V. and Churilova, T.Ya., 2010. Simplified Method of Calculation of Spectral Diffuse Beam Attenuation Coefficient in the Black Sea Upper Layer on the Basis of Satellite Data. In: MHI, 2010. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: MHI. Iss. 22, pp. 47-60 (in Russian).
  8. Ludwig, W., Dumont, E., Meybeck, M. and Heussner, S., 2009. River Discharges of Water and Nutrients to the Mediterranean and Black Sea: Major Drivers for Ecosystem Changes during Past and Future Decades? Progress in Oceanography, 80(3-4), pp. 199-217. doi:10.1016/j.pocean.2009.02.001
  9. Korotaev, G.K., Oguz, T., Dorofeyev, V.L., Demyshev, S.G., Kubryakov, A.I. and Ratner, Yu.B., 2011. Development of Black Sea Nowcasting and Forecasting System. Ocean Science, 7(5), pp. 629-649. doi:10.5194/os-7-629-2011
  10. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R. [et al.], 2020. The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), pp. 1999-2049. doi:10.1002/qj.3803
  11. Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y. and Dibarboure, G., 2019. DUACS DT2018: 25 Years of Reprocessed Sea Level Altimetry Products. Ocean Science, 15(5), pp. 1207-1224. doi:10.5194/os-15-1207- 2019
  12. Dorofeev, V.L. and Korotaev, G.K., 2004. Assimilation of the Data of Satellite Altimetry in an Eddy-Resolving Model of Circulation of the Black Sea. Physical Oceanography, 14(1), pp. 42-56. doi:10.1023/B:POCE.0000025369.39845.c3
  13. Roemmich, D., Johnson, G.C., Riser, S., Davis, R., Gilson, J., Brechner Owens, W., Garzoli, S.L., Schmid, C. and Ignaszewski, M., 2009. The Argo Program: Observing the Global Ocean with Profiling Floats. Oceanography, 22(2), pp. 34-43. doi:10.5670/oceanog.2009.36
  14. Ivanov, V.A. and Belokopytov, V.N., 2013. Oceanography of the Black Sea. Sevastopol: ECOSI-Gidrofizika, 210 p. (in Russian).
  15. Lima, L., Ciliberti, S.A., Aydoğdu, A., Masina, S., Escudier, R., Cipollone, A., Azevedo, D., Causio, S., Peneva, E. [et al.], 2021. Climate Signals in the Black Sea from a Multidecadal Eddy-Resolving Reanalysis. Frontiers in Marine Science, 8, 710973. doi:10.3389/fmars.2021.710973
  16. Von Schuckmann, K., Le Traon, P.-Y., Smith, N., Pascual, A., Djavidnia, S., Gattuso, J.-P., Grégoire, M. and Nolan, G., eds., 2020. Copernicus Marine Service Ocean State Report, Issue 4. Journal of Operational Oceanography, 13(sup. 1), pp. S1-S172. doi:10.1080/1755876X.2020.1785097
  17. Podymov, O.I., Zatsepin, A.G. and Ocherednik, V.V., 2021. Increase of Temperature and Salinity in the Active Layer of the Northeastern Black Sea from 2010 to 2020. Physical Oceanography, 28(3), pp. 257-265. doi:10.22449/1573-160X-2021-3-257–265
  18. Dorofeyev, V.L. and Sukhikh, L.I., 2021. Features of Currents on the Black Sea Northwestern Shelf Based on the Numerical Simulation Results. Physical Oceanography, 28(4), pp. 426-437. doi:10.22449/1573-160X-2021-4-426-437

Download the article (PDF)