Features of Distribution of Hydrocarbons in Bottom Sediments of the Streletskaya Bay (Black Sea)

Е. А. Tikhonova1, К. I. Gurov2, ✉, О. V. Soloveva1

1 A. O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: gurovki@gmail.com

Abstract

Purpose. The purpose of the study is to identify the features of spatial and vertical distribution of hydrocarbons in the bottom sediments and to assess the likely sources of their ingoing to the port coastal water area (at the example of the Streletskaya Bay).

Methods and Results. The samples of the bottom sediments surface layer (5 sampling stations) and the columns of marine sediments (2 columns) were taken during the joint expedition of the Department of Marine Sanitary Hydrobiology (FRC IBSS) and the Department of Marine Biogeochemistry (FRC MHI) in July 2021 as a part of a long-term monitoring of the Sevastopol bays. The features of spatial distribution in the sediment surface layer (0–5 cm), the profiles of vertical distribution of the geochemical characteristics of bottom sediments, hydrocarbons and n-alkanes, and the individual diagnostic indices (markers) were analyzed. The history of hydrocarbon accumulation resulted from the 50-year long human activity was considered, and the anthropogenic load on the bay water area was assessed.

Conclusions. The bottom sediments composition of the Streletskaya Bay promotes the accumulation of hydrocarbons: the aleurite-pelitic silts of high natural humidity are ubiquitous, and the organic carbon average contents in the surface layer (5.1%) and in the bottom sediments thickness (5.3%) significantly exceed the values typical of the other water areas in the Sevastopol region (1.2–3.7%). The hydrocarbon concentrations in bottom sediments ranged from 328 to 2175 mg/kg (the average value is 1160 mg/kg), that exceeds the pollution levels in many port areas of the Black Sea. The concentrations of the studied substances increase from the top of the bay to its apex. The composition of n-alkanes and the nature of chromatograms indicate a mixed origin of hydrocarbons at the dominating allochthonous (incoming from land) compounds, and also the presence of n-alkanes of the autochthonous and petroleum origin. Based on the data resulted from the chronology of hydrocarbon accumulation, the maximum anthropogenic loads on the bay fell on the periods 1967–1973 and 1985–1991. These were the years of intensive economic development of the city and the population growth in the sub-district adjacent to the studied water area in the Streletskaya Bay. In recent years, the intensity of hydrocarbon accumulation has been decreasing, but the signs of oil pollution are still present.

Keywords

bottom sediments, hydrocarbons, n-alkanes, markers, Streletskaya Bay, Black Sea

Acknowledgements

The study was carried out within the framework of the themes of state assignments: FRC IBSS – “Molismological and biogeochemical foundations of the marine ecosystems homeostasis” (No. 121031500515-8) and FSBSI FRC MHI – “Complex interdisciplinary studies of oceanologic processes which determine functioning and evolution of the ecosystems in the coastal zones of the Black Sea and the Sea of Azov” (FNNN-2021-0005).

Original russian text

Original Russian Text © Е. А. Tikhonova, К. I. Gurov, О. V. Soloveva, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 5 (2023)

For citation

Tikhonova, E.A., Gurov, K.I. and Soloveva, O.V., 2023. Features of Distribution of Hydrocarbons in Bottom Sediments of the Streletskaya Bay (Black Sea). Physical Oceanography, 30(5), pp. 632-651.

References

  1. Tikhonova, E.A., Kotelyanets, E.A. and Volkov, N.V., 2018. Characteristic of Pollution of the Bottom Deposits in the Coastal Area of Sevastopol on the Example of the Streletskaya Bay (the Black Sea). Ecological Safety of Coastal and Shelf Zones of Sea, (1), pp. 74-80. doi:10.22449/2413-5577-2018-1-74-80 (in Russian).
  2. Mironov, O.G., Kirjukhina, L.N. and Alyomov, S.V., 2003. Sanitary-Biological Aspects of the Sevastopol Bays Ecology in XX Century. Sevastopol: ECOSI-Gidrofizika, 185 p. (in Russian).
  3. Mironov, O.G., ed., 2009. Sanitary-Biological Investigations in Coastal Area of Sevastopol Region. Sevastopol: ECOSI-Gidrofizika, 192 p. (in Russian).
  4. Mironov, O.G. and Alyomov, S.V., eds., 2018. Sanitary and Biological Studies of the South- Western Crimea Coastal Waters at the Beginning of XXI Century. Simferopol: PP “ARIAL”, 276 р. (in Russian).
  5. Rubtsova, S.I., Tikhonova, E.A., Burdiyan, N.V. and Doroshenko, Yu.V., 2013. The Estimation of the Ecological State of Sevastopol Bays on Basic Chemical and Microbiological Criteria. Marine Ekological Journal = Morskoj Ehkologicheskij Zhurnal, 12(2), pp. 38-50 (in Russian).
  6. Soloveva, O.V., Tikhonova, E.A., Gurov, K.I. and Kotelyanets, E.A., 2022. Hydrocarbons Composition of Sea Bottom Sediments (Balaklava Bay, Black Sea). International Journal of Environmental Science and Technology, (20), pp. 2405-2416. doi:10.1007/s13762-022-04167-y
  7. Osadchaya, T.S., 2013. Oil Hydrocarbons in Bottom Sediments of Sevastopol Coastal Areas (The Black Sea). Scientific World, 43(3), pp. 30-36 (in Russian).
  8. Nemirovskaya, I.A., Onegina, V.D., Konovalov, B.V. and Trubkin, I.P., 2018. Hydrocarbons in the Waters and Bottom Sediments of the Black Sea. In: A.P. Lisitzin, ed., 2018. The Black Sea System. Moscow: Scientific World, pp. 677-704. doi:10.29006/978-5-91522-473-4.2018 (in Russian).
  9. Tikhonova, E.A., 2021. Organic Matter of Bottom Sediments of the Crimean and Caucasian Coasts (Azov and Black Seas). Ecological Safety of Coastal and Shelf Zones of Sea, (3), pp. 52-67 doi:10.22449/2413-5577-2021-3-52-67 (in Russian).
  10. Jafarabadi, A.R., Bakhtiari, A.R., Aliabadian, M. and Toosi, A.S., 2017. Spatial Distribution and Composition of Aliphatic Hydrocarbons, Polycyclic Aromatic Hydrocarbons and Hopanes in Superficial Sediments of the Coral Reefs of the Persian Gulf, Iran. Environmental Pollution, 224, pp. 195-223. doi:10.1016/j.envpol.2017.01.080
  11. Shirneshan, G., Bakhtiari, A.R. and Memariani, M., 2017. Identifying the Source of Petroleum Pollution in Sediment Cores of the Southwest of the Caspian Sea Using Chemical Fingerprinting of Aliphatic and Alicyclic Hydrocarbons. Marine Pollution Bulletin, 115(1-2), pp. 383-390. doi:10.1016/j.marpolbul.2016.12.022
  12. Wang, J., Fu, G., Li, W., Shi, Y., Pang, J., Wang, Q., Lü, W., Liu, C. and Liu, J., 2018. The Effects of Two Free-Floating Plants (Eichhornia Crassipes and Pistia Stratiotes) on the Burrow Morphology and Water Quality Characteristics of Pond Loach (Misgurnus Anguillicaudatus) Habitat. Aquaculture and Fisheries, 3(1), pp. 22-29. doi:10.1016/j.aaf.2017.12.001
  13. Readman, J.W., Fillmann, G., Tolosa, I., Bartocci, J., Villeneuve, J.-P., Catinni, C. and Mee, L.D., 2002. Petroleum and PAH Contamination of the Black Sea. Marine Pollution Bulletin, 44(1), pp. 48-62. doi:10.1016/S0025-326X(01)00189-8
  14. Commendatore, M.G. and Esteves, J.L., 2004. Natural and Anthropogenic Hydrocarbons in Sediments from the Chubut River (Patagonia, Argentina). Marine Pollution Bulletin, 48(9- 10), pp. 910-918. doi:10.1016/j.marpolbul.2003.11.015
  15. Gdara, I., Zrafi, I., Balducci, C., Cecinato, A. and Ghrabi, A., 2020. First Investigation of Seasonal Concentration Behaviors and Sources Assessment of Aliphatic Hydrocarbon in Waters and Sediments from Wadi El Bey, Tunisia. Archives of Environmental Contamination and Toxicology, 78(1), pp. 1-19. doi:10.1007/s00244-019-00669-y
  16. Panov, B.N., ed., 2008. Main Results of Complex Research in the Azov-Black Sea Basin and the World Ocean (Jubilee Issue). Kerch: YugNIRO Publishers, 195 p. (in Russian).
  17. Ovsyany, E.J., Romanov, A.S., Min’kovskaya, R.Ya., Krasnovid, I.I., Ozyumenko, B.A. and Zymbal, I.M., 2001. Basic Polluting Sources of Sea near Sevastopol. In: MHI, 2001. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: MHI. Iss. 2, pp. 138-152 (in Russian).
  18. Ljutsarev, S.V., 1986. The Determination of Organic Carbon in the Sea Bottom Sediments by Means of Dry Oxidation. Oceanology, 26(4), pp.704-708 (in Russian).
  19. Zabegaev, I.A., Shul’gin, V.F. and Orekhova, N.A., 2021. Application of Instrumental Methods for Analysis of Bottom Sediments for Ecological Monitoring of Marine Ecosystems. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry, 7(73), iss. 4, pp. 242-254 (in Russian).
  20. Zakaria, M.P., Bong, C.-W. and Vaezzadeh, V., 2018. Chapter 16 – Fingerprinting of Petroleum Hydrocarbons in Malaysia Using Environmental Forensic Techniques: A 20-Year Field Data Review. In: S. A. Stout and Z. Wang, eds., 2018. Oil Spill Environmental Forensics Case Studies. Elsevier, pp. 345-372. doi:10.1016/B978-0-12-804434-6.00016-1
  21. Nemirovskaya, I.A., 2013. Oil in the Ocean (Pollution and Natural Flow). Moscow: Scientific World, 432 p. (in Russian).
  22. Bouloubassi, I. and Saliot, A., 1993. Investigation of Anthropogenic and Natural Organic Inputs in Estuarine Sediments Using Hydrocarbon Markers (NAH, LAB, PAH). Oceanologica Acta, 16(2), pp. 145-161.
  23. Gao, Y., Han, Y., Xia, J., Tan, J., Wang, Y.-P. and Wang, S., 2021. Composition and Distribution of Aliphatic Hydrocarbon Compounds and Biomarkers in Seafloor Sediments from Offshore of the Leizhou Peninsula (South China). ACS Omega, 6(50), pp. 34286-34293. doi:10.1021/acsomega.1c03529
  24. Silva, T.R., Lopes, S.R.P., Spörl, G., Knoppers, B.A. and Azevedo, D.A., 2013. Evaluation of Anthropogenic Inputs of Hydrocarbons in Sediment Cores from a Tropical Brazilian Estuarine System. Microchemical Journal, 109, pp. 178-188. doi:10.1016/j.microc.2012.02.012
  25. Commendatore, M.G., Esteves, J.L. and Colombo, J.C., 2000. Hydrocarbons in Coastal Sediments of Patagonia, Argentina: Levels and Probable Sources. Marine Pollution Bulletin, 40(11), pp. 989-998. doi:10.1016/s0025-326x(00)00042-4
  26. Wang, X.-C., Sun, S., Ma, H.-Q. and Liu, Y., 2006. Sources and Distribution of Aliphatic and Polyaromatic Hydrocarbons in Sediments of Jiaozhou Bay, Qingdao (China). Marine Pollution Bulletin, 52(2), pp. 129-138. doi:10.1016/j.marpolbul.2005.08.010
  27. Ficken, K.J., Li, B., Swain, D.L. and Eglinton, G., 2000. An n-Alkane Proxy for the Sedimentary Input of Submerged/Floating Freshwater Aquatic Macrophytes. Organic Geochemistry, 31(7-8), pp. 745-749. doi:10.1016/S0146-6380(00)00081-4
  28. Meyers, P.A., 1997. Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic, and Paleoclimatic Processes. Organic Geochemistry, 27(5-6), pp. 213-250. doi:10.1016/S0146-6380(97)00049-1
  29. Eglinton, G. and Hamilton, R.J., 1963. Chapter 8 – The Distribution of Alkanes. In: T. Swain, ed., 1963. Chemical Plant Taxonomy. London; New-York: Academic Press, pp. 187-217. doi:10.1016/B978-0-12-395540-1.50012-9
  30. Syakti, A.D., Hidayati, N.V., Hilmi, E., Piram, A. and Doumenq, P., 2013. Source Apportionment of Sedimentary Hydrocarbons in the Segara Anakan Nature Reserve, Indonesia. Marine Pollution Bulletin, 74(1), pp. 141-148. doi:10.1016/j.marpolbul.2013.07.015
  31. Zhang, S., Li, S., Dong, H., Zhao, Q., Lu, X. and Shi, J., 2014. An Analysis of Organic Matter Sources for Surface Sediments in the Central South Yellow Sea, China: Evidence Based on Macroelements and n-Alkanes. Marine Pollution Bulletin, 88(1-2), pp. 389-397. doi:10.1016/j.marpolbul.2014.07.064
  32. Poynter, J.G. and Eglinton, G., 1990. Molecular Composition of Three Sediments from Hole 717 C: the Bengal Fan. Proceedings of the Ocean Drilling Program, Scientific Results, 116, pp. 155-161. doi:10.2973/odp.proc.sr.116.151.1990
  33. Bush, R.T. and McInerney, F.A., 2015. Influence of Temperature and C4 Abundance on n- Alkane Chain Length Distributions across the Central USA. Organic Geochemistry, 79, pp. 65-73. doi:10.1016/j.orggeochem.2014.12.003
  34. Bush, R.T. and McInerney, F.A., 2013. Leaf Wax n-Alkane Distributions in and across Modern Plants: Implications for Paleoecology and Chemotaxonomy. Geochimica et Cosmochimica Acta, 117, pp. 161-179. doi:10.1016/j.gca.2013.04.016
  35. Bourbonniere, R.A. and Meyers, P.A., 1996. Anthropogenic Influences on Hydrocarbon Contents of Sediments Deposited in Eastern Lake Ontario since 1800. Environmental Geology, 28(1), pp. 22-28. doi:10.1007/S002540050074
  36. Bray, E.E. and Evans, E.D., 1961. Distribution of n-Paraffins as a Clue to Recognition of Source Beds. Geochimica et Cosmochimica Acta, 22(1), pp. 2-15 doi:10.1016/0016- 7037(61)90069-2
  37. Cranwell, P.A., 1973. Chain-Length Distribution of n-Alkanes from Lake Sediments in Relation to Post-Glacial Environmental Change. Freshwater Biology, 3(3), pp. 259-265. doi:10.1111/j.1365-2427.1973.tb00921.x
  38. Mead, R., Xu, Y., Chong, J. and Jaffé, R., 2005. Sediment and Soil Organic Matter Source Assessment as Revealed by the Molecular Distribution and Carbon Isotopic Composition of n-Alkanes. Organic Geochemistry, 36(3), pp. 363-370. doi:10.1016/j.orggeochem.2004.10.003
  39. Orekhova, N.A., Ovsyany, E.I., Gurov, K.I. and Popov, M.A., 2018. Organic Matter and Grain-Size Distribution of the Modern Bottom Sediments in the Balaklava Bay (the Black Sea). Physical Oceanography, 25(6), pp. 479-488. doi:10.22449/1573-160X-2018-6-479-488
  40. Kurinnaya, Yu.S., Gurov, K.I., Zabegaev, I.A. and Orekhova, N.A., 2022. Redox Conditions and Characteristics of Bottom Sediments in the Bays of the Sevastopol Region. Ecological Safety of Coastal and Shelf Zones of Sea, (1), pp. 42-54. doi:10.22449/2413- 5577-2022-1-42-54
  41. Kotelyanets, E.A., Gurov, K.I., Tikhonova, E.A. and Kondratev, S.I., 2019. Pollutants in Bottom Sediments in the Balaklava Bay (the Black Sea). Physical Oceanography, 26(5), pp. 414-424. doi:10.22449/1573-160X-2019-5-414-424
  42. Nemirovskaya, I.A., Onegina, V.D. and Konovalov, B.V., 2017. Hydrocarbons in the Suspended Matter and the Bottom Sediments in Different Regions of the Black Sea Russian Sector. Physical Oceanography, (4), pp. 46-58. doi:10.22449/1573-160X-2017-4-46-58
  43. Beiger, T., Abrajano, T.A. and Hellou, J., 1997. Generation of Biogenic Hydrocarbons during a Spring Bloom in Newfoundland Coastal (NW Atlantic) Waters. Organic Geochemistry, 26(3-4), pp. 207-218. doi:10.1016/S0146-6380(96)00159-3
  44. Poturay, V.A., 2022. Organic Matter and Molecular-Weight Distribution of Hydrocarbons in the Annenskoe Thermal Waters (Far East, Russia). Russian Geology and Geophysics, 63(10), pp. 1119-1132. doi:10.2113/RGG20204311
  45. Peters, K.E., Walters, C.C. and Moldowan, J.M., 2005. The Biomarker Guide. Volume 1: Biomarkers and Isotopes in the Environment and Human History. Cambridge, New York, Melborne: Cambridge University Press, 1132 p. doi:10.1017/CBO9780511524868
  46. Bourbonniere, R.A. and Meyers, P.A., 1996. Sedimentary Geolipid Records of Historical Changes in the Watersheds and Productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41(2), pp. 352-359. doi:10.4319/lo.1996.41.2.0352
  47. Jeng, W.-L., 2006. Higher Plant n-Alkane Average Chain Length as an Indicator of Petrogenic Hydrocarbon Contamination in Marine Sediments. Marine Chemistry, 102(3-4), pp. 242-251. doi:10.1016/j.marchem.2006.05.001
  48. Yusoff, H.B., Assim, Z.B. and Mohamad, S.B., 2012. Aliphatic Hydrocarbons in Surface Sediments from South China Sea off Kuching Division, Sarawak. The Malaysian Journal of Analytical Sciences, 16(1), pp. 1-11.
  49. Fagbote, O.E. and Olanipekun, E.O., 2013. Characterization and Sources of Aliphatic Hydrocarbons of the Sediments of River Oluwa at Agbabu Bitumen Deposit Area, Western Nigeria. Journal of Scientific Research and Reports, 2(1), pp. 228-248. doi:10.9734/JSRR/2013/3063
  50. Lü, X. and Zhai, S., 2008. The Distribution and Environmental Significance of n-Alkanes in the Changjiang River Estuary Sediments. Acta Sientiae Circumstantiae, 28(6), pp. 1221-1226.
  51. Volkman, J.K., Holdsworth, D.G., Neill, G.P. and Bavor Jr.H.J., 1992. Identification of Natural, Anthropogenic and Petroleum Hydrocarbons in Aquatic Sediments. Science of the Total Environment, 112(2-3), pp. 203-219. doi:10.1016/0048-9697(92)90188-X
  52. Ten Haven, H.L., 1996. Applications and Limitations of Mango’s Light Hydrocarbon Parameters in Petroleum Correlation Studies. Organic Geochemistry, 24(10-11), pp. 957-976. doi:10.1016/S0146-6380(96)00091-5
  53. Ovsyany, E.I. and Gurov, K.I., 2016. Research of Organic Carbon and Carbonate Content in the Bottom Sediments of the Crimean Southern Coast Shelf. Physical Oceanography, (1), pp. 60-70. doi:10.22449/1573-160X-2016-1-60-70
  54. Mirzoeva, N.Y., Gulin, S.B., Sidorov, I.G. and Gulina, L.V., 2018. Estimation of Sedimentation and Sedimentation Rate in the Coastal and Deep-Water Areas of the Black Sea Using Natural and Anthropogenic (Chernobyl) Radionuclides. In: A. P. Lisitsin, ed., 2018. The Black Sea System. Moscow: Scientific World, pp. 659-670. doi:10.29006/978-5-91522- 473-4.2018 (in Russian).

Download the article (PDF)