Factors Forming the Spatial Distribution of Natural and Man-Made Radionuclides in the Bottom Sediments of the Kamyshovaya Bay, Sevastopol

D. A. Kremenchutskii, Yu. S. Gurova

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: d.kremenchutskii@mhi-ras.ru

Abstract

Purpose. The purpose of the article is to reveal the features of spatial distribution of the radionuclide (210Pbex, 226Ra, 137Cs and 40K) contents in the bottom sediments of the Kamyshovaya Bay and to identify the factors determining them.

Methods and Results. The paper presents the results of measurements of the concentrations of 210Pbex, 226Ra, 137Cs and 40K in nine samples of the surface (0–5 cm) layer and in two columns of bottom sediments collected in the Kamyshovaya Bay in July 2021. The activity of 210Pbex, 226Ra, 137Cs and 40K in the samples was determined using a low-background gamma spectrometer with a well-type NaI(Tl) scintillation detector. Estimates of the relationship between the activity of the radionuclides under consideration in the bottom sediments with the sediment granulometric composition and the organic carbon content are given. The rate of sedimentation and the flux of matter and radionuclides to the bottom sediments were quantitatively assessed.

Conclusions. Spatial variability of the concentrations of radionuclides under consideration reveals a general tendency towards increase of their values from the northern part of the bay to its southern one. The results of the analysis indicate that the spatial variability of radionuclide content in the surface sediment samples and their vertical distribution in the two columns are explained by the changes in particle size distribution and in sedimentation rates, as well as by presence of the storm water and domestic wastewater sources in the bay southern part. Based on the results of the correlation analysis, the process of water purification in the area under study was assumed to result from the adsorption of radionuclides and organic matter by a fine-grained material that was followed by sedimentation of this material in bottom sediments. The average values of the sedimentation rate and the matter flux to bottom sediments were 0.43 cm/year and 2976 g/(m2·year), respectively. The flux of radionuclides to the bottom sediments was 53.0 Bq/(m2·year) for 137Cs, 690.5 Bq/(m2·year) for 40K, 58.0 Bq/(m 2·year) for 226Ra and 79.5 Bq/ (m2·year) for 210Pbex.

Keywords

Black Sea, Kamyshovaya Bay, bottom sediments, particle size distribution, organic carbon, cesium-137, 137Cs, potassium-40, 40K, radium-226, 226Ra, lead-210, 210Pb, sedimentation rate, radionuclides, sedimentation

Acknowledgements

The bottom sediment samples and the data on their geochemical characteristics were obtained within the framework of state assignment of FSBSI FRC M HI No. FNNN-2021-0005. The data on radionuclide activity were obtained within the framework of the theme of state assignment of FSBSI FRC M HI No. FNNN-2021-0004. Quantitative estimates of the sedimentation rate and substance fluxs to the bottom sediments were obtained within the framework of the RSF project No. 22-77-10056.

Original russian text

Original Russian Text © D. A. Kremenchutskii, Yu. S. Gurova, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 5 (2023)

For citation

Kremenchutskii, D.A. and Gurova, Yu.S., 2023. Factors Forming the Spatial Distribution of Natural and M an-M ade Radionuclides in the Bottom Sediments of the Kamyshovaya Bay, Sevastopol. Physical Oceanography, 30(5), pp. 652-665.

References

  1. Kuftarkova, E.A., Rodionova, N.Yu., Gubanov, V.I. and Bobko, N.I., 2008. Hydrochemical Characteristics of Several Bays of Sevastopol Coast. In: YugNIRO, 2008. YugNIRO Proceedings. Kerch: YugNIRO. Vol. 46, pp. 110-117 (in Russian).
  2. Mironov, O.G., Alemov, S.V., Shchekaturina, T.L., Osadchaya, T.S., Soloveva, O.V., Burdiyan, N.V., Tikhonova, E.A., Mironov, O.A., Doroshenko, Yu.V. [et al.], 2018. Sanitary and Biological Studies of the South-Western Crimea Coastal Waters at the Beginning of XXI Century. Simferopol: IT “ARIAL”, 276 p. doi:10.21072/ 978-5-907118-89-8 (in Russian).
  3. Mironov, O.G., Kirjukhina, L.N. and Alyomov, S.V., 2003. Sanitary-Biological Aspects of the Sevastopol Bays Ecology in XX Century. Sevastopol: ECOSI-Gidrofizika, 185 p. (in Russian).
  4. Soloveva, O.V. and Tikhonova, E.A., 2018. The Organic Matter Content Dynamics in the Sea Bottom Sediments of the Sevastopol Harbor Water Area. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry, 4(70), pp. 196-206 (in Russian).
  5. Kurinnaya, Yu.S., Gurov, K.I., Zabegaev, I.A., and Orekhova, N.A., 2022. Redox Conditions and Characteristics of Bottom Sediments in the Bays of the Sevastopol Region. Ecological Safety of Coastal and Shelf Zones of Sea, (1), pp. 42-54. doi:10.22449/2413-5577-2022-1-42-54
  6. Mirzoeva, N.Yu., Gulin, S.B. and Miroshnichenko, O.N., 2018. Strontium and Cesium Radionuclides. In: A. P. Lisitzin, ed., 2018. The Black Sea System. Moscow: Scientific World, pp. 605-624. doi:10.29006/978-5-91522-473-4.2018.605 (in Russian).
  7. Fuhrmann, M., Pietrzak, R., Neiheisel, J. and Dyer, R., 1992. Partitioning of Cs-137 between Sediment and Water from the Black Sea. Chemistry and Ecology, 7(1-4), pp. 3-17. doi:10.1080/02757549208055429
  8. Buesseler, K.O. and Livingston, H.D., 1997. Time-Series Profiles of 134Cs, 137Cs and 90Sr in the Black Sea. In: E. Özsoy, A. Mikaelyan, eds., 1997. Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Dordrecht: Springer. NATO ASI Series, vol. 27. pp. 239-251. doi:10.1007/978-94-011-5758-2_19
  9. Polikarpov, G.G., Egorov, V.N., Gulin, S.B., Stokozov, N.A., Lazorenko, G.E., Mirzoeva, N.Yu., Tereshchenko, N.N., Tsytsugina, V.G., Kulebakina, L.G. [et al.], 2008. Radioecological Response of the Black Sea to the Chernobyl Accident. Sevastopol: ECOSI-Gidrofizika, 666 p. (in Russian).
  10. Delfanti, R., Özsoy, E., Kaberi, H., Schirone, A., Salvi, S., Conte, F., Tsabaris, C. And Papucci, C., 2014. Evolution and Fluxes of 137Cs in the Black Sea/Turkish Straits System/North Aegean Sea. Journal of Marine Systems, 135, pp. 117-123. doi:10.1016/j.jmarsys.2013.01.006
  11. Chiroşca, G., Mihailov, M.E., Ţugulan, L.C. and Chiroşca, A.V., 2018. Radionuclides Assessment for the Romanian Black Sea Shelf. In: C. Finkl, C. Makowski, eds., 2018. Diversity in Coastal Marine Sciences. Cham: Springer. Coastal Research Library, vol. 23, pp. 221-232. doi:10.1007/978-3-319-57577-3_13
  12. Mirzoeva, N.Y., Gulin, S.B., Sidorov, I.G. and Gulina, L.V., 2018. Estimation of Sedimentation and Sedimentation Rates in the Coastal and Deep-Water Areas of the Black Sea Using Natural and Anthropogenic (Chernobyl) Radionuclides. In: A. P. Lisitzin, ed., 2018. The Black Sea System. Moscow: Scientific World, pp. 659-670. doi:10.29006/978-5-91522-473-4.2018 (in Russian).
  13. Dovhyi, I.I., Kremenchutskii, D.A., Bezhin, N.A., Kozlovskaia, O.N., Milyutin, V.V. and Kozlitin, E.A., 2020. Distribution of 137Cs in the Surface Layer of the Black Sea in Summer, 2017. Physical Oceanography, 27(2), pp. 152-160. doi:10.22449/1573-160X-2020-2-152-160
  14. Drexler, J.Z., Fuller, C.C. and Archfield, S., 2018. The Approaching Obsolescence of 137Cs Dating of Wetland Soils in North America. Quaternary Science Reviews, 199, pp. 83-96. doi:10.1016/j.quascirev.2018.08.028
  15. Evrard, O., Chaboche, P.-A., Ramon, R., Foucher, A. and Laceby, J.P., 2020. A Global Review of Sediment Source Fingerprinting Research Incorporating Fallout Radiocesium (137Cs). Geomorphology, 362, 107103. doi:10.1016/j.geomorph.2020.107103
  16. Gulin, S.B., Sidorov, I.G. and Gulina, L.V., 2013. Biogenic Sedimentation in the Black Sea: Radiotracer-Derived Study. Marine Ecological Journal, 12(2), pp. 19-25 (in Russian).
  17. Gulin, S.B., Gulina, L.V., Sidorov, I.G., Proskurnin, V.Yu., Duka, M.S., Moseichenko, I.N. and Rodina, E.A., 2014. 40K in the Black Sea: A Proxy to Estimate Biogenic Sedimentation. Journal of Environmental Radioactivity, 134, pp. 21-26. doi:10.1016/j.jenvrad.2014.02.011
  18. Rusakov, V.Yu., Borisov, A.P. and Solovieva, G.Yu., 2019. Sedimentation Rates in Different Facies–Genetic Types of Bottom Sediments in the Kara Sea: Evidence from the 210Pb and 137Cs Radionuclides. Geochemistry International, 57(11), pp. 1185-1200. doi:10.1134/S0016702919110077
  19. Kremenchutskii, D.A. and Gurov, K.I., 2020. Assessment of Sedimentation Rate in the Balaklava Bay by Radionuclides. In: STEF92 Technology, 2020. 20th International Multidisciplinary Scientific GeoConference SGEM 2020. Sofia: STEF92 Technology, vol. 5.1, pp. 83-90. doi:10.5593/sgem2020/5.1/s20.011
  20. Abril, J.M ., 2022. On the Use of 210Pb-Based Records of Sedimentation Rates and Activity Concentrations for Tracking Past Environmental Changes. Journal of Environmental Radioactivity, 244-245, 106823. doi:10.1016/j.jenvrad.2022.106823
  21. Schirone, A., Rožmarić, M., Barsanti, M., Raiteri, G., Sanchez-Cabeza, J.A., García-Tenorio, R. and Osvath, I., 2022. Assessment of Measurement Accuracy in 210Pb Dating Sediment Methods. Quaternary Geochronology, 69, 101255. doi:10.1016/j.quageo.2022.101255
  22. Kremenchutskii, D.A. and Gurov, K.I. 2021. Distribution of 137Cs and 40K in the Bottom Sediments of the Balaklava Bay (the Black Sea). Physical Oceanography, 28(2), pp. 191-204. doi:10.22449/1573-160X-2021-2-191-204
  23. Robbins, J.A., Edgington, D.N. and Kemp, A.L.W., 1978. Comparative 210Pb, 137Cs, and Pollen Geochronologies of Sediments from Lakes Ontario and Erie. Quaternary Research, 10(2), pp. 256-278. doi:10.1016/0033-5894(78)90105-9
  24. Currie, L.A., 1968. Limits for Qualitative Detection and Quantitative Determination. Аpplication to Radiochemistry. Analytical Chemistry, 40(3), pp. 586-593. doi:10.1021/ac60259a007
  25. Ovsyany, E.J., Romanov, A.S., Min’kovskaya, R.Ya., Krasnovid, I.I., Ozyumenko, B.A. and Zymbal, I.M ., 2001. Basic Polluting Sources of Sea near Sevastopol. In: MHI, 2001. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: MHI. Iss. 2, pp. 138-152 (in Russian).
  26. Egorov, V.N., Gulin, S.B., Malakhova, L.V., Mirzoyeva, N.Yu., Popovichev, V.N., Tereshchenko, N.N., Lazorenko, G.Е., Plotitsyna, O.V., Malakhova, T.V., [et al.], 2018. Biogeochemical Characteristics of the Sevastopol Bay Sedimentation Self-Purification from Radionuclides, Mercury and Chlorogenic Contaminants. Marine Biological Journal, 3(2), pp. 40-52. doi:10.21072/mbj.2018.03.2.03
  27. Li, Y.-H., Burkhardt, L., Buchholtz, M., O’Hara, P. and Santschi, P.H, 1984. Partition of Radiotracers between Suspended Particles and Seawater. Geochimica et Cosmochimica Acta, 48(10), pp. 2011-2019. doi:10.1016/0016-7037(84)90382-X
  28. Hawley, N., Robbins, J.A. and Eadie, B.J., 1986. The Partitioning of 7Beryllium in Fresh Water. Geochimica et Cosmochimica Acta, 50(6), pp. 1127-1131. doi:10.1016/0016-7037(86)90393-5
  29. Kremenchutskii, D.A., Batrakov, G.F., Dovhyi, I.I. and Sapozhnikov, Y.A., 2021. Role of Suspended Matter in Controlling Beryllium-7 (7Be) in the Black Sea Surface Layer. Journal of Marine Systems, 217, 103513. doi:10.1016/j.jmarsys.2021.103513
  30. Egorov, V.N., Gulin, S.B., Popovichev, V.N., Mirzoyeva, N.Yu., Tereshenko, N.N., Lazorenko, G.E., Malakhova, L.V., Plotitsina, O.V., Malakhova, T.V. [et al.], 2013. Biogeochemical Mechanisms of Formation of Critical Zones Concerning to Pollutants in the Black Sea. Marine Ecology Journal, 12(4), pp. 5-26 (in Russian).

Download the article (PDF)