Vertical Turbulent Exchange in the Black Sea: Experimental Studies and Modeling

A. S. Samodurov1, A. M. Chukharev1, 2, ✉, D. A. Kazakov1, M. I. Pavlov1, V. A. Korzhuev1

1 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

2 Sevastopol State University, Sevastopol, Russian Federation

e-mail: alexchukh@mail.ru

Abstract

Purpose. The paper is purposed at summarizing the main results of experimental and theoretical studies of vertical turbulent exchange in the upper mixed layer and stratified layers of the Black Sea carried out in recent years.

Methods and Results. The equations for semi-empirical dependences of turbulence intensity on the governing parameters are proposed, based on a large amount of experimental data on the turbulent structure obtained on the research vessels and a stationary oceanographic platform using modern high-frequency equipment combined with conventional measurements of main hydrophysical characteristics. The experimental data obtained were used to verify theoretical models and to specify empirical coefficients in the proposed equations. A multiscale model was applied additionally to the Kraus – Turner model to forecast reliably the upper mixed layer deepening after a storm. The turbulent energy dissipation rate and the turbulent diffusion coefficient in the stratified layers were found using the data on microstructure of hydrophysical fields. The coefficient dependences on buoyancy frequency in different layers are expressed by a power function with different degree indices.

Conclusions. Having been examined in detail, the stratification conditions as well as a large array of sounding data made it possible to identify five layers with different density gradients and different mechanisms dominant in generating turbulence. Such a differentiation specifies the expressions describing turbulent diffusion intensity depending on the layer depth and physical and geographical conditions affecting vertical exchange. On the whole, the resulting power-law dependences agree well with the earlier developed 1.5D model of vertical turbulent exchange for the Black Sea. The proposed way of considering the effect of turbulence generation mechanisms in the upper mixed layer improves correspondence between the model calculations and the experimental data. The Kraus – Turner model supplemented with the multiscale turbulence model permits to forecast deepening of the mixed layer resulting from storm conditions.

Keywords

Black Sea, turbulent exchange, upper mixed layer, stratified layers, dissipation rate, turbulent diffusion coefficient, modeling, experimental data

Acknowledgements

Within the framework of state assignment of FSBSI FRC MHI, theme FNNN-2021-0004 “Oceanological processes”, the experimental studies, data processing and partial analysis, modernization of a multiscale model for the sea surface layer, and specification of functional dependencies of the turbulent diffusion coefficient in stratified layers were implemented. Modeling and analysis of the UML thickness dynamics in the experiments, records analysis and parameterization of the Langmuir circulation were performed with the financial support of the RSF grant 22-17-00150.

Original russian text

Original Russian Text © The Authors, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 6, pp. 735–759 (2023)

For citation

Samodurov, A.S., Chukharev, A.M., Kazakov, D.A., Pavlov, M.I. and Korzhuev, V.A., 2023. Vertical Turbulent Exchange in the Black Sea: Experimental Studies and Modeling. Physical Oceanography, 30(6), pp. 689-713.

References

  1. Sullivan, P.P. and McWilliams, J.C., 2010. Dynamics of Winds and Currents Coupled to Surface Waves. Annual Review of Fluid Mechanics, 42, pp. 19-42. doi:10.1146/annurev-fluid-121108-145541
  2. Benilov, A.Yu., 1973. On the Generation of Turbulence in the Ocean by the Surface Waves. Izvestiya Akademii Nauk SSSR. Fizika Atmosfery i Okeana, 9(3), pp. 293-303 (in Russian).
  3. Benilov, A.Yu. and Ly, L.N., 2002. Modelling of Surface Waves Breaking Effects in the Ocean Upper Layer. Mathematical and Computer Modelling, 35(1-2), pp. 191-213. doi:10.1016/S0895-7177(01)00159-5
  4. Csanady, G.T., 1984. The Free Surface Turbulent Shear Layer. Journal of Physical Oceanography, 14(2), pp. 402-411. doi:10.1175/1520-0485(1984)014%3C0402:TFSTSL%3E2.0.CO;2
  5. Craig, P.D. and Banner, M.L., 1994. Modeling Wave-Enhanced Turbulence in the Ocean Surface Layer. Journal of Physical Oceanography, 24(12), pp. 2546-2559. doi:10.1175/1520-0485(1994)024%3C2546:MWETIT%3E2.0.CO;2
  6. Chukharev, A.M., 2013. Multitime Scale Model of Turbulence in the Sea Surface Layer. Izvestiya, Atmospheric and Oceanic Physics, 49(4), pp. 439-449. doi:10.1134/S0001433813040026
  7. Mellor, G. and Blumberg, A., 2004. Wave Breaking and Ocean Surface Layer Thermal Response. Journal of Physical Oceanography, 34(3), pp. 693-698. doi:10.1175/2517.1
  8. Kantha, L.H. and Clayson, C.A., 2004. On the Effect of Surface Gravity Waves on Mixing in the Oceanic Mixed Layer. Ocean Modelling, 6(2), pp. 101-124. doi:10.1016/S1463-5003(02)00062-8
  9. Romero, L., Melville, W.K. and Kleiss, J.M., 2012. Spectral Energy Dissipation due to Surface Wave Breaking. Journal of Physical Oceanography, 42(9), pp. 1421-1444. doi:10.1175/JPO-D-11-072.1
  10. Sutherland, P. and Melville, W.K., 2013. Field Measurements and Scaling of Ocean Surface Wave-Breaking Statistics. Geophysical Research Letters, 40(12), pp. 3074-3079. doi:10.1002/grl.50584
  11. Sutherland, P. and Melville, W.K., 2015. Field Measurements of Surface and Near-Surface Turbulence in the Presence of Breaking Waves. Journal of Physical Oceanography, 45(4), pp. 943-965. doi:10.1175/JPO-D-14-0133.1
  12. Wunsch, C. and Ferrari, R., 2004. Vertical Mixing, Energy, and the General Circulation of the Oceans. Annual Review of Fluid Mechanics, 36, pp. 281-314. doi:10.1146/annurev.fluid.36.050802.122121
  13. Osborn, T.R., 1980. Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. Journal of Physical Oceanography, 10(1), pp. 83-89. doi:10.1175/1520-0485(1980)010%3C0083:EOTLRO%3E2.0.CO;2
  14. McComas, C.H. and Müller, P., 1981. The Dynamic Balance of Internal Waves. Journal of Physical Oceanography, 11(7), pp. 970-986. doi:10.1175/1520-0485(1981)011%3C0970:TDBOIW%3E2.0.CO;2
  15. Henyey, F.S., Wright, J. and Flatté, S.M., 1986. Energy and Action Flow through the Internal Wave Field: An Eikonal Approach. Journal of Geophysical Research: Oceans, 91(C7), pp. 8487-8495. doi:10.1029/Jc091Ic07P08487
  16. Winters, K., Lombard, P., Riley, J. and D'Asaro, E., 1995. Available Potential Energy and Mixing in Density-Stratified Fluids. Journal of Fluid Mechanics, 289, pp. 115-128. doi:10.1017/S002211209500125X
  17. Gargett, A.E. and Holloway, G., 1984. Dissipation and Diffusion by Internal Wave Breaking. Journal of Marine Research, 42(1), pp. 15-27. doi:10.1357/002224084788506158
  18. Gregg, M.C., 1989. Scaling Turbulent Dissipation in the Thermocline. Journal of Geophysical Research: Oceans, 94(C7), pp. 9686-9698. doi:10.1029/JC094iC07p09686
  19. Van Haren, H., 2019. Open-Ocean-Interior Moored Sensor Turbulence Estimates, below a Meddy. Deep Sea Research Part I: Oceanographic Research Papers, 144, pp. 75-84. doi:10.1016/j.dsr.2019.01.005
  20. Samodurov, A.S., Chukharev, A.M., Nosova, A.V. and Globina, L.V., 2013. Internal Waves Intensification in the Shelf Break Region as a Factor of the Vertical Exchange Intensification. Fundamental and Applied Hydrophysics, 6(2), pp. 12-24 (in Russian).
  21. Samodurov, A.S., Chukharev, A.M. and Kazakov, D.A., 2021. Basic Regularities of Vertical Turbulent Exchange in the Mixed and Stratified Layers of the Black Sea. Physical Oceanography, 28(4), pp. 405-422. doi:10.22449/1573-160X-2021-4-376-391
  22. Chukharev, A.M. and Pavlov, M.I., 2021. Model and Experimental Estimates of Vertical Mixing Intensity in the Sea Upper Homogeneous Layer. Physical Oceanography, 28(3), pp. 309-325. doi:10.22449/1573-160X-2021-3-309-325
  23. Weller, R.A. and Price, J.F., 1988. Langmuir Circulation within the Oceanic Mixed Layer. Deep Sea Research Part A: Oceanographic Research Paper, 35(5), pp. 711-747. doi:10.1016/0198-0149(88)90027-1
  24. Thorpe, S.A., 2004. Langmuir Circulation. Annual Review of Fluid Mechanics, 36, pp. 55-79. doi:10.1146/annurev.fluid.36.052203.071431
  25. Zedel, L. and Farmer, D., 1991. Organized Structures in Subsurface Bubble Clouds: Langmuir Circulation in the Open Ocean. Journal of Geophysical Research: Oceans, 96(C5), pp. 8889-8900. doi:10.1029/91JC00189
  26. Wu, L., Rutgersson, A. and Sahlee, E., 2015. Upper-Ocean Mixing due to Surface Gravity Waves. Journal of Geophysical Research: Oceans, 120(12), pp. 8210-8228. doi:10.1002/2015JC011329
  27. McWilliams, J.C. and Sullivan, P.P., 2000. Vertical Mixing by Langmuir Circulations. Spill Science & Technology Bulletin, 6(3-4), pp. 225-237. doi:10.1016/S1353-2561(01)00041-X
  28. Li, M., Garrett, C. and Skyllingstad, E., 2005. A Regime Diagram for Classifying Turbulent Large Eddies in the Upper Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 52(2), pp. 259-278. doi:10.1016/j.dsr.2004.09.004
  29. Harcourt, R.R. and D’Asaro, E.A., 2008. Large-Eddy Simulation of Langmuir Turbulence in Pure Wind Seas. Journal of Physical Oceanography, 38(7), pp. 1542-1562. doi:10.1175/2007JPO3842.1
  30. Plueddemann, A.J., Smith, J.A., Farmer, D.M., Weller, R.A., Crawford, W.R., Pinkel, R., Vagle, S. and Gnanadesikan, A., 1996. Structure and Variability of Langmuir Circulation during the Surface Waves Processes Program. Journal of Geophysical Research: Oceans, 101(C2), pp. 3525-3543. doi:10.1029/95JC03282
  31. Kitaigorodskii, S.A. and Lumley, J.L., 1983. Wave-Turbulence Interactions in the Upper Ocean. Part I: The Energy Balance of the Interacting Fields of Surface Wind Waves and Wind-Induced Three-Dimensional Turbulence. Journal of Physical Oceanography, 13(11), pp. 1977-1987. doi:10.1175/1520-0485(1983)013%3C1977:WTIITU%3E2.0.CO;2
  32. Kraus, E.B. and Turner, J.S., 1967. A One-Dimensional Model of the Seasonal Thermocline. II. The General Theory and Its Consequences. Tellus, 19(1), pp. 98-106. doi:10.1111/j.2153-3490.1967.tb01462.x
  33. Samodurov, A.S., Dykman, V.Z., Barabash, V.A., Efremov, O.I., Zubov, A.G., Pavlenko, O.I. and Chukharev, A.M., 2005. “Sigma-1” Measuring Complex for the Investigation of Small-Scale Characteristics of Hydrophysical Fields in the Upper Layer of the Sea. Physical Oceanography, 15(5), pp. 311-322. doi:10.1007/s11110-006-0005-1
  34. Oakey, N.S., 1982. Determination of the Rate of Dissipation of Turbulent Energy from Simultaneous Temperature and Velocity Shear Microstructure Measurements. Journal of Physical Oceanography, 12(3), pp. 256-271. doi:10.1175/1520-0485(1982)012%3C0256:DOTROD%3E2.0.CO;2
  35. Samodurov, A.S., Lubitsky, A.A. and Panteleev, N.A., 1995. Contribution of Breaking Internal Waves to Structure Formation, Energy Dissipation, and Vertical Diffusion in the Ocean. Physical Oceanography, 6(3), pp. 177-190. doi:10.1007/BF02197516
  36. Gregg, M.С., 1989. Scaling Turbulent Dissipation in the Thermocline. Journal of Geophysical Research: Oceans, 94(C7), pp. 9686-9698. doi:10.1029/JC094iC07p09686
  37. McEwen, A.D., 1983. The Kinematics of Stratified Mixing through Internal Wavebreaking. Journal of Fluid Mechanics, 128, pp. 47-57. doi:10.1017/S0022112083000373
  38. Samodurov, A.S., Kulsha, O.E. and Belokopytov, V.N., 2006. Stationary Model of Vertical Turbulent Exchange in the Black Sea with Real Geometry. In: MHI, 2006. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: MHI. Iss. 14, pp. 517-523 (in Russian).
  39. Samodurov, A.S. and Globina, L.V., 2012. Dissipation of Energy and Vertical Exchange in Stratified Basins Caused by the Shear Instability in the Field of Quasiinertial Internal Waves. Physical Oceanography, 21(6), pp. 383-393. doi:10.1007/s11110-012-9130-1
  40. Samodurov, A.S., 2009. Bottom Boundary Layer in the Black Sea: Formation of the Stationary State. Physical Oceanography, 19(1), pp. 13-21. doi:10.1007/s11110-009-9035-9
  41. Kazakov, D.A. and Samodurov, A.S., 2021. Estimation of the Vertical Turbulent Exchange Intensity in the Main Pycnocline Layer in the Prikerchensky Area of the Black Sea Shelf. Ecological Safety of Coastal and Shelf Zones of Sea, (2), pp. 94-105. doi:10.22449/2413-5577-2021-2-94–105 (in Russian).
  42. Artamonov, Yu.V., Shutov, S.A., Skripaleva, E.A., Shapovalov, R.O., Fedirko, A.V. and Shcherbachenko, S.V., 2018. Water Circulation in the Northern Black Sea in Summer 2016 (Based on the Data Obtained in the 87th Cruise of the R/V Professor Vodyanitsky). Physical Oceanography, 25(1), pp. 52-66. doi:10.22449/1573-160X-2018-1-52-66
  43. Artamonov, Yu.V., Fedirko, A.V., Skripaleva, E.A., Shutov, S.A., Deryushkin, D.V., Kolmak, R.V., Zavyalov, D.D., Shapovalov, R.O., Shapovalov, Yu.I. and Shcherbachenko, S.V., 2019. Water Structure in the Area of the Rim Black Sea Current in Spring and Summer 2017 (94th, 95th Cruises of the R/V “Professor Vodyanitsky”). Ecological Safety of Coastal and Shelf Zones of Sea, (1), pp. 16-28. doi:10.22449/2413-5577-2019-1-16-28 (in Russian).
  44. Artamonov, Yu.V., Skripaleva, E.A., Fedirko, A.V., Shutov, S.А., Derjushkin, D.V., Shapovalov, R.O., Shapovalov, Yu. I. and Shcherbachenko, S.V., 2020. Waters Circulation in the Northern Part of the Black Sea in Summer – Winter of 2018. Ecological Safety of Coastal and Shelf Zones of Sea, (1), pp. 69-90. doi:10.22449/2413-5577-2020-1-69-90 (in Russian).
  45. Fedirko, A.V., Artamonov, Yu.V., Derjushkin, D.V., Nikolsky, N.V., Ozerov, S.A., Skripaleva, E.A., Shutov, S.А., Shapovalov, R.O., Shapovalov, Yu. I. [et al.], 2020. [Circulation and Thermohaline Structure of Waters of the Black Sea Northern Part according to Data of Hydrological Measurements in 2019 (106, 108, 110, 111 cruises of R/V Professor Vodyanitsky)]. In: RAS, 2020. Results of Expeditionary Research in 2019 in the World Ocean, Inland Waters and the Svalbard Archipelago: Conference Materials, Moscow, February 26–27, 2020. Sevastopol: A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, pp. 206-212 (in Russian).
  46. Belokopytov, V.N., 2019. Seasonal Variability of Vertical Thermohaline Stratification on the Black Sea Shelf of Crimea. Ecological Safety of Coastal and Shelf Zones of Sea, (3), pp. 19-24. doi:10.22449/2413-5577-2019-3-19-24 (in Russian).

Download the article (PDF)