Regional Features of Water Density Stratification and Internal Wave Characteristics in the Arctic Seas

A. A. Bukatov, N. M. Solovei, E. A. Pavlenko

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: nele7@mail.ru

Abstract

Purpose. The work is purposed at summarizing the results of studies both of the spatio-temporal variability of water density stratification and the internal wave characteristics in the Barents, Kara, Laptev, East Siberian, Chukchi and Beaufort seas.

Methods and Results. Based on the World Ocean Atlas data, the average monthly profiles of buoyancy frequency were calculated at the 0.25° × 0.25° grid points for 1959–2020. To study the vertical structure and dispersion characteristics of internal waves, the eigenvalues and eigenfunctions of the main boundary value problem of the Sturm – Liouville type were found at the fixed values of a wave number. The regional features of vertical structure and intra-annual variability of the Väisälä – Brunt frequency were revealed. The relationship between the water density vertical structure and the free internal wave characteristics in the seas under consideration was analyzed.

Conclusions. It is shown that maximum water stability in the Barents Sea takes place in July – August, in the Kara Sea – in September and November, in the Laptev Sea – from June to November, in the East Siberian and Chukchi seas – in July, and in the Beaufort Sea – in June. In the same months, the smallest values of the amplitude of vertical velocity component as well as the smallest own periods of internal waves are noted. The depth of maximum values of the vertical component amplitude of internal wave velocities exceeds that of the density gradient maximum values by about 10–20 m.

Keywords

Barents Sea, Kara Sea, Laptev Sea, East Siberian Sea, Chukchi Sea, Beaufort Sea, Väisälä – Brunt frequency, internal waves, first mode, amplitude of velocity vertical component, own frequency, own period

Acknowledgements

The investigation was carried out within the framework of state assignment on theme FNNN-2021-0004.

Original russian text

Original Russian Text © A. A. Bukatov, N. M. Solovei, E. A. Pavlenko, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 6, pp. 779–796 (2023)

For citation

Bukatov, A.A., Solovei, N.M. and Pavlenko, E.A., 2023. Regional Features of Waters Density Stratification and Internal Wave Characteristics in the Arctic Seas. Physical Oceanography, 30(6), pp. 731-746.

References

  1. Rudels, B., Jones, E.P., Schauer, U. and Eriksson, P., 2004. Atlantic Sources of the Arctic Ocean Surface and Halocline Waters. Polar Research, 23(2), pp. 181-208. doi:10.3402/polar.v23i2.6278
  2. Ivanov, V.V., Frolov, I.E. and Filchuk, K.V., 2020. Transformation of Atlantic Water in the North-Eastern Barents Sea in Winter. Arctic and Antarctic Research, 66(3), pp. 246-266. doi:10.30758/0555-2648-2020-66-3-246-266
  3. Fedorova, Z.P. and Yankina, Z.S., 1963. The Passage of Pacific Ocean Water through the Bering Strait into the Chukchi Sea. Okeanologia, 3(5), pp. 777-784.
  4. Bukatov, A.A., Pavlenko, E.A. and Solovei, N.M., 2023. River Runoff Influence on the Density Stratification of the Russian Arctic Seas. In: T. Chaplina, ed., 2023. Processes in GeoMedia – Volume VI. Springer Geology. Cham: Springer, pp. 523-536. doi:10.1007/978-3-031-16575-7_47
  5. Bukatov, A.A., Pavlenko, E.A. and Solovei, N.M., 2018. Features of Spatial-Time Variability of Väisälä-Brunt Frequency in Barents and Kara Seas. Processes in GeoMedia,( 3), pp. 1004-1013 (in Russian).
  6. Bukatov, A.A., Pavlenko, E.A. and Solovei, N.M., 2019. Regional Features of the Buoyancy Frequency Distribution in the Laptev and East Siberian Seas. Physical Oceanography, 26(5), pp. 387-396. doi:10.22449/1573-160X-2019-5-387-396
  7. Bukatov, A.Е. and Pavlenko, E.A., 2017. The Spatial and Temporal Variability of Distribution of the Buoyancy Frequency in the Chukchi Sea. Processes in GeoMedia, 3(12), pp. 573-579 (in Russian).
  8. Bukatov, A.A., Solovei, N.M. and Pavlenko, E.A., 2021. Free Short-Period Internal Waves in the Arctic Seas of Russia. Physical Oceanography, 28(6), pp. 599-611. doi:10.22449/1573-160X-2021-6-599-611
  9. Bukatov, A.A., Solovei, N.M. and Pavlenko, E.A., 2020. Estimation of the Relation between the Dispersion Features of Free Internal Waves and the Density Field Vertical Structure in the Barents and Kara Seas. Physical Oceanography, 27(1), pp. 18-27. doi:10.22449/1573-160X-2020-1-18-27
  10. Bukatov, A.A., Pavlenko, E.A. and Solovey, N.M., 2021. Influence of Continental Runoff on the Density Stratification of the Laptev and East Siberian Seas. Processes in GeoMedia, (2), pp. 1093-1100 (in Russian).
  11. Locarnini, R.A., Mishonov, A.V., Baranova, O.K., Boyer, T.P., Zweng, M.M., Garcia, H.E., Reagan, J.R., Seidov, D., Weathers, K.W. [et al.], 2019. World Ocean Atlas 2018. Volume 1: Temperature. NOAA Atlas NESDIS 81. Silver Spring, MD: U.S. Department of Commerce, 52 p. Available at: https://www.ncei.noaa.gov/sites/default/files/2021-03/woa18_vol1.pdf [Accessed: 31 October 2021].
  12. Zweng, M.M., Reagan, J.R., Seidov, D., Boyer, T.P., Locarnini R.A., Garcia, H.E., Mishonov, A.V., Baranova, O.K., Weathers, K.W. [et al.], 2019. World Ocean Atlas 2018. Volume 2: Salinity. NOAA Atlas NESDIS 82. Silver Spring, MD: U.S. Department of Commerce, 50 p. Available at: https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol2.pdf [Accessed: 31 October 2021].
  13. Gritsenko, V.A. and Krasitsky, V.P., 1982. On a Method for the Computation of Dispersion Relations and Eigenfunctions for Internal Waves in the Ocean from the Field Measurement Data. Okeanologia, (4), pp. 545-549 (in Russian).
  14. Kozlov, I.E., Kudryavtsev, V.N. and Sandven, S., 2010. Some Results of Internal Waves Study in the Barents Sea Using Satellite Radar Data. Problems of Arctic and Antarctic, (3), pp. 60-69 (in Russian).
  15. Zimin, A.V., Romanenkov, D.A., Kozlov, I.E., Chapron, B., Rodionov, A.A., Atadjanova, O.A, Myasoedov, A.G. and Collard, F., 2014. Short Period Internal Waves in the White Sea: Operational Remote Sensing Experiment in Summer 2012. Issledovanie Zemli iz Kosmosa, (3), pp. 41-55. doi:10.7868/S0205961414030087 (in Russian).
  16. Kozlov, I.E., Kudryavtsev, V.N., Zubkova, E.V., Zimin, A.V. and Chapron, B., 2015. Characteristics of Short-Period Internal Waves in the Kara Sea Inferred from Satellite SAR Data. Izvestiya, Atmospheric and Oceanic Physics, 51(9), pp. 1073-1087. doi:10.1134/S0001433815090121
  17. Lobovikov, P.V., Kurkina, O.E., Kurkin, A.A. and Kokoulina, M.V., 2019. Transformation of the First Mode Breather of Internal Waves above a Bottom Step in a Three-Layer Fluid. Izvestiya, Atmospheric and Oceanic Physics, 55(6), pp. 650-661. doi:10.1134/S0001433819060094
  18. Ozhigin, V.K., Ivshin, V.A., Trofimov, A.G., Karsakov, A.L. and Antsiferov, M.Yu., 2016. The Barents Sea Water: Structure, Circulation, Variability. Murmansk: PINRO, 260 p. (in Russian).
  19. Osadchiev, A.A., 2021. River Plumes. Moscow: Scientific World, 286 p. (in Russian).
  20. Petrov, K.M., 2008. Principles of Physical-Geographical Differentiation of the Arctic Seas: Kara Sea. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, (6), pp. 19-30 (in Russian).
  21. Timofeev, V.T., 1944. [The Barents Sea Sustainability]. Problems of the Arctic, (3), pp. 5-37 (in Russian).
  22. Ivanov, V.V., Rusanov, V.P., Gordin, O.I. and Osipova, I.V., 1984. Interannual Variability of the Distribution of River Waters in the Kara Sea. Proceedings of the AARI, 368, pp. 74-81 (in Russian).
  23. Morison, J., Kwok, R., Peralta-Ferriz, C., Alkire, M., Rigor, I., Andersen, R. and Steele, M., 2012. Changing Arctic Ocean Freshwater Pathways. Nature, 481, pp. 66-70. doi:10.1038/nature10705
  24. Kagan, B.A., Timofeev, A.A. and Sofina, E.V., 2010. Seasonal Variability of Surface and Internal M2 Tides in the Arctic Ocean. Izvestiya, Atmospheric and Oceanic Physics, 46, pp. 652-662. doi:10.1134/S0001433810050105
  25. Lavrenov, I.V. and Morozov, E.G., eds., 2002. Surface and Internal Waves in the Arctic Seas. Saint Petersburg: Gidrometeoizdat, 362 p. (in Russian).

Download the article (PDF)