Distribution of 228Ra and 226Ra in the Surface Layer of the Black Sea Waters

O. N. Kozlovskaia1, 2, D. A. Kremenchutskii1, ✉, Iu. G. Shibetskaia1, V. A. Razina1, N. A. Bezhin1, 2

1 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

2 Sevastopol State University, Sevastopol, Russian Federation

e-mail: d.kremenchutskii@mhi-ras.ru

Abstract

Purpose. The purpose of the work is to summarize information on the features of spatial variability of the 226Ra and 228Ra concentration fields and the factors influencing these features in the surface water layer of the Black Sea.

Methods and Results. The data on spatial variability of the 228Ra and 226Ra concentrations in the surface (0.3–3.0 m) layer of the Black Sea obtained during four expeditions were used. The 228Ra and 226Ra isotopes were recovered from the seawater samples using the MnO2-based fiber. Their activity was measured by a UMF-2000 alpha-beta radiometer. The data on the content of main elements of the basic biogenic cycle were obtained photometrically.

Conclusions. The concentrations of 228Ra and 226Ra varied in a range of 17.2 to 172.2 dmp/m3 and from 38.0 to 270.1 dmp/m3, respectively. It is shown that in the region under study, the influence of submarine sources and, presumably, sewage is of a local character and is manifested in an increase of concentrations of these radionuclides or one of them by 1.5–2.3 times. The mesoscale eddies observed in the region of the Southern Coast of Crimea are assumed to affect spatial variability of the radium isotope concentration fields that results in a local decrease or increase in their concentrations by 2.3–2.8 times. It is shown that propagation of the Azov Sea waters in the Black Sea is traced by the 228Ra and 226Ra concentration fields: the increased (by 2.3–2.6 times) values of the contents of both isotopes are observed in these areas. It is established that in the areas subjected to the affect of river runoff, the concentration of long-lived radium isotopes is observed to increase with distance from the coast. The spatial scales, on which the influence of a particular source is manifested, are expected to be proportional to its power (flow rate and radionuclides concentration): the higher the power, the greater the distance at which its influence is monitored.

Keywords

228Ra, radium-228, 226Ra, radium-226, Black Sea, submarine groundwater discharge, river flow

Acknowledgements

The authors are grateful to the captain and crew of the R/V Professor Vodyanitsky for their help in carrying out expeditionary operations on the vessel, as well as to the members of the Hydrology and Currents group for providing the data on temperature and salinity. Water samples were taken in the Collective Center R/V Professor Vodyanitsky of FSBSI FSC A.O. Kovalevsky Institute of Biology of the Southern Seas. The study was carried out within the framework of a theme of state assignment of Ministry of Science and Higher Education of Russian Federation FNNN-2021-0004.

Original russian text

Original Russian Text © The Authors, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 6, pp. 831–850 (2023)

For citation

Kozlovskaia, O.N., Kremenchutskii, D.A., Shibetskaia, Iu.G., Razina, V.A. and Bezhin, N.A., 2023. Distribution of 228Ra and 226Ra in the Surface Layer of the Black Sea Waters. Physical Oceanography, 30(6), pp. 792-810.

References

  1. Rutgers van der Loeff, M.M. and Geibert, W., 2008. Chapter 7 U- and Th-Series Nuclides as Tracers of Particle Dynamics, Scavenging and Biogeochemical Cycles in the Oceans. In: S. Krishnaswami and J. K. Cochran, eds., 2008. U-Th-Series Nuclides in Aquatic Systems. Radioactivity in the Environment, vol. 13. Amsterdam: Elsevier, pp. 227-268. doi:10.1016/S1569-4860(07)00007-1
  2. Broecker, W.S., Goddard, J. and Sarmiento, J.L., 1976. The Distribution of 226Ra in the Atlantic Ocean. Earth and Planetary Science Letters, 32(2), pp. 220-235. doi:10.1016/0012-821X(76)90063-7
  3. Gonneea, M.E., Charette, M.A., Liu, Q., Herrera-Silveira, J.A. and Morales-Ojeda, S.M., 2014. Trace Element Geochemistry of Groundwater in a Karst Subterranean Estuary (Yucatan Peninsula, Mexico). Geochimica et Cosmochimica Acta, 132, pp. 31-49. doi:10.1016/j.gca.2014.01.037
  4. Rodellas, V., Garcia-Orellana, J., Trezzi, G., Masqué, P., Stieglitz, T.C., Bokuniewicz, H., Cochran, J.K. and Berdalet, E., 2017. Using the Radium Quartet to Quantify Submarine Groundwater Discharge and Porewater Exchange. Geochimica et Cosmochimica Acta, 196, pp. 58-73. doi:10.1016/j.gca.2016.09.016
  5. Moore, W.S., Sarmiento, J.L. and Key, R.M., 2008. Submarine Groundwater Discharge Revealed by 228Ra Distribution in the Upper Atlantic Ocean. Nature Geoscience, 1(5), pp. 309-311. doi:10.1038/ngeo183
  6. Su, N., Du, J., Duan, Z., Deng, B. and Zhang, J., 2015. Radium Isotopes and Their Environmental Implications in the Changjiang River System. Estuarine, Coastal and Shelf Science, 156, pp. 155-164. doi:10.1016/j.ecss.2014.12.017
  7. Carroll, J., Falkner, K.K., Brown, E.T. and Moore, W.S., 1993. The Role of the Ganges-Brahmaputra Mixing Zone in Supplying Barium and 226Ra to the Bay of Bengal. Geochimica et Cosmochimica Acta, 57(13), pp. 2981-2990. doi:10.1016/0016-7037(93)90287-7
  8. Beck, A.J., Rapaglia, J.P., Cochran, J.K., Bokuniewicz, H.J. and Yang, S., 2008. Submarine Groundwater Discharge to Great South Bay, NY, Estimated Using Ra Isotopes. Marine Chemistry, 109(3-4), pp. 279-291. doi:10.1016/j.marchem.2007.07.011
  9. Charette, M.A., Moore, W.S. and Burnett, W.C., 2008. Chapter 5 Uranium- and Thorium-Series Nuclides as Tracers of Submarine Groundwater Discharge. In: S. Krishnaswami, J. K. Cochran, eds., 2008. U-Th-Series Nuclides in Aquatic Systems. Radioactivity in the Environment, vol. 13. Amsterdam: Elsevier, pp. 155-191. doi:10.1016/s1569-4860(07)00005-8
  10. Garcia-Orellana, J., Rodellas, V., Tamborski, J., Diego-Feliu, M., van Beek, P., Weinstein, Y., Charette, M., Alorda-Kleinglass, A., Michael, H.A. [et al.], 2021. Radium Isotopes as Submarine Groundwater Discharge (SGD) Tracers: Review and Recommendations. Earth-Science Reviews, 220, 103681. doi:10.1016/j.earscirev.2021.103681
  11. Van Beek, P., François, R., Conte, M., Reyss, J.-L., Souhaut, M. and Charette, M., 2007. 228Ra/226Ra and 226Ra/Ba Ratios to Track Barite Formation and Transport in the Water Column. Geochimica et Cosmochimica Acta, 71(1), pp. 71-86. doi:10.1016/j.gca.2006.07.041
  12. Van Beek, P., Sternberg, E., Reyss, J.-L., Souhaut, M., Robin, E. and Jeandel, C., 2009. 228Ra/226Ra and 226Ra/Ba Ratios in the Western Mediterranean Sea: Barite Formation and Transport in the Water Column. Geochimica et Cosmochimica Acta, 73(16), pp. 4720-4737. doi:10.1016/j.gca.2009.05.063
  13. Van Beek, P., François, R., Honda, M., Charette, M.A., Reyss, J.-L., Ganeshram, R., Monnin, C. and Honjo, S., 2022. Fractionation of 226Ra and Ba in the Upper North Pacific Ocean. Frontiers in Marine Science, 9, 859117. doi:10.3389/fmars.2022.859117
  14. Xu, B., Cardenas, M.B., Santos, I.R., Burnett, W.C., Charette, M.A., Rodellas, V., Li S., Lian, E. and Yu, Z., 2022. Closing the Global Marine 226Ra Budget Reveals the Biological Pump as a Dominant Removal Flux in the Upper Ocean. Geophysical Research Letters, 49(12), e2022GL098087. doi:10.1029/2022GL098087
  15. Moore, W.S., 2000. Determining Coastal Mixing Rates Using Radium Isotopes. Continental Shelf Research, 20(15), pp. 1993-2007. doi:10.1016/S0278-4343(00)00054-6
  16. Iyengar, M.A.R., Kannan, V. and Rao, K.N.,. 1989. 228Ra/226Ra Ratios in Coastal Waters of Kalpakkam. Journal of Environmental Radioactivity, 9(2), pp. 163-180. doi:10.1016/0265-931X(89)90022-2
  17. Hsieh, Y.-T., Geibert, W., van Beek, P., Stahl, H., Aleynik, D. and Henderson, G.M., 2013. Using the Radium Quartet (228Ra, 226Ra, 224Ra, and 223Ra) to Estimate Water Mixing and Radium Inputs in Loch Etive, Scotland. Limnology and Oceanography, 58(3), pp. 1089-1102. doi:10.4319/lo.2013.58.3.1089
  18. Ku, T.-L., Luo, S., Kusakabe, M. and Bishop, J.K.B., 1995. 228Ra-Derived Nutrient Budgets in the Upper Equatorial Pacific and the Role of “New” Silicate in Limiting Productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 42(2-3), pp. 479-497. doi:10.1016/0967-0645(95)00020-Q
  19. Plater, A.J., Ivanovich, M. and Dugdale, R.E., 1995. 226Ra Contents and 228Ra/226Ra Activity Ratios of the Fenland Rivers and The Wash, Eastern England: Spatial and Seasonal Trends. Chemical Geology, 119(1-4), pp. 275-292. doi:10.1016/0009-2541(94)00109-l
  20. Moore, W.S., 2006. Radium Isotopes as Tracers of Submarine Groundwater Discharge in Sicily. Continental Shelf Research, 26(7), pp. 852-861. doi:10.1016/j.csr.2005.12.004
  21. Moore, W.S., 2003. Sources and Fluxes of Submarine Groundwater Discharge Delineated by Radium Isotopes. Biogeochemistry, 66(1-2), pp. 75-93. doi:10.1023/B:BIOG.0000006065.77764.a0
  22. Burnett, W.C., Aggarwal, P.K., Aureli, A., Bokuniewicz, H., Cable, J.E., Charette, M.A., Kontar, E., Krupa, S., Kulkarni, K.M. [et al.], 2006. Quantifying Submarine Groundwater Discharge in the Coastal Zone via Multiple Methods. Science of the Total Environment, 367(2-3). pp. 498-543. doi:10.1016/j.scitotenv.2006.05.009
  23. Gao, J.-Y., Wang, X.-J., Zhang, Y. and Li, H.-L., 2018. Estimating Submarine Groundwater Discharge and Associated Nutrient Inputs into Daya Bay during Spring Using Radium Isotopes. Water Science and Engineering, 11(2), pp. 120-130. doi:10.1016/j.wse.2018.06.002
  24. Liu, J., Liu, D. and Du, J., 2022. Radium-Traced Nutrient Outwelling from the Subei Shoal to the Yellow Sea: Fluxes and Environmental Implication. Acta Oceanologica Sinica, 41(6), pp. 12-21. doi:10.1007/s13131-021-1930-z
  25. Tamborski, J., van Beek, P., Conan, P., Pujo-Pay, M., Odobel, C., Ghiglione, J.-F., Seidel, J.-L., Arfib, B., Diego-Feliu. M. [et al.], 2020. Submarine Karstic Springs as a Source of Nutrients and Bioactive Trace Metals for the Oligotrophic Northwest Mediterranean Sea. Science of The Total Environment, 732, 139106. doi:10.1016/j.scitotenv.2020.139106
  26. Niencheski, L.F.H., Windom, H.L., Moore, W.S. and Jahnke, R.A., 2007. Submarine Groundwater Discharge of Nutrients to the Ocean along a Coastal Lagoon Barrier, Southern Brazil. Marine Chemistry, 106(3-4), pp. 546–561. doi:10.1016/j.marchem.2007.06.004
  27. Rahman, S., Tamborski, J.J., Charette, M.A. and Cochran K.J., 2019. Dissolved Silica in the Subterranean Estuary and the Impact of Submarine Groundwater Discharge on the Global Marine Silica Budget. Marine Chemistry, 208, pp. 29-42. doi:10.1016/j.marchem.2018.11.006
  28. Xing, N., Chen, M., Huang, Y., Cai, P. and Qiu, Y., 2003. Distribution of 226Ra in the Arctic Ocean and the Bering Sea and Its Hydrologic Implications. Science in China Series D: Earth Sciences, 46(5), pp. 516-528. doi:10.1360/03yd9045
  29. Dovhyi, I.I., Kremenchutskii, D.A., Bezhin, N.A., Shibetskaya, Yu.G., Tovarchii, Ya.Yu., Egorin, A.M., Tokar, E.A. and Tananaev, I.G., 2020. MnO2 Fiber as a Sorbent for Radionuclides in Oceanographic Investigations. Journal of Radioanalytical and Nuclear Chemistry, 323(1), pp. 539-547. doi:10.1007/s10967-019-06940-9
  30. Dovhyi, I.I., Bezhin, N.A., Kremenchutskii, D.A., Kozlovskaya, O.N., Chepyzhenko, A.I., Verterich, A.V., Tovarchii, Ya.Yu., Shibetskaya, Yu.G. and Chaikin, D.Yu., 2021. Studying Submarine Groundwater Discharge at the Cape Ayia: A Multi-Tracer Approach. Physical Oceanography, 28(1), pp. 52-66. doi:10.22449/1573-160X-2021-1-52-66
  31. Kozlovskaia, O.N., Shibetskaia, I.G., Bezhin, N.A. and Tananaev, I.G., 2023. Estimation of 226Ra and 228Ra Content Using Various Types of Sorbents and Their Distribution in the Surface Layer of the Black Sea. Materials, 16(5), 1935. doi:10.3390/ma16051935
  32. Wurl, O., ed., 2009. Practical Guidelines for the Analysis of Seawater. Boca Raton: CRC Press, 408 p. doi:10.1201/9781420073072
  33. Falkner, K.K., O'Neill, D.J., Todd, J.F., Moore, W.S. and Edmond, J.M., 1991. Depletion of Barium and Radium-226 in Black Sea Surface Waters over the Past Thirty Years. Nature, 350, pp. 491-494. doi:10.1038/350491a0
  34. Moore, W.S. and Falkner, K.K., 1999. Cycling of Radium and Barium in the Black Sea. Journal of Environmental Radioactivity, 43(2), pp. 247-254. doi:10.1016/s0265-931x(98)00095-2
  35. Moore, W.S. and Shaw, T.J., 2008. Fluxes and Behavior of Radium Isotopes, Barium, and Uranium in Seven Southeastern US Rivers and Estuaries. Marine Chemistry, 108(3-4), pp. 236-254. doi:10.1016/j.marchem.2007.03.004
  36. Rutgers Van Der Loeff, M.M., Key, R.M., Scholten, J., Bauch, D. and Michel, A., 1995. 228Ra as a Tracer for Shelf Water in the Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 42(6), pp. 1533-1553. doi:10.1016/0967-0645(95)00053-4
  37. Moore, W.S., Feely, H.W. and Li, Y.-H., 1980. Radium Isotopes in Sub-Arctic Waters. Earth and Planetary Science Letters, 49(2), pp. 329-340. doi:10.1016/0012-821x(80)90076-x
  38. Wang, G., Wang, S., Wang, Z. and Jing, W., 2018. Significance of Submarine Groundwater Discharge in Nutrient Budgets in Tropical Sanya Bay, China. Sustainability, 10(2), 380. doi:10.3390/su10020380
  39. Moore, W.S., Astwood, H. and Lindstrom, C., 1995. Radium Isotopes in Coastal Waters on the Amazon Shelf. Geochimica et Cosmochimica Acta, 59(20), pp. 4285-4298. doi:10.1016/0016-7037(95)00242-r
  40. Bituh, T., Petrinec, B., Marović, G., Senčar, J. and Gospodarić, I., 2008. 226Ra and 228Ra in Croatian Rivers. Collegium Antropologicum, 32(2), pp. 105-108.
  41. Rutgers van der Loeff, M.M., Kühne, S., Wahsner, M., Höltzen, H., Frank, M., Ekwurzel, B., Mensch, M. and Rachold, V., 2003. 228Ra and 226Ra in the Kara and Laptev Seas. Continental Shelf Research, 23(1), pp. 113-124. doi:10.1016/s0278-4343(02)00169-3
  42. Gurov, K.I., Ovsyany, E.I., Kotelyanets, E.A. and Konovalov, S.K., 2015. Factors of Formation and Features of Physical and Chemical Characteristics of the Bottom Sediments in the Balaklava Bay (the Black Sea). Physical Oceanography, (4), pp. 46-52. doi:10.22449/1573-160X-2015-4-46-52
  43. Kondrat’ev, S.I., Prusov, A.V. and Yurovskii, Yu.G., 2010. Observations of the Submarine Discharge of Underground Waters (South Coast of the Crimea). Physical Oceanography, 20(1), pp. 28-41. doi:10.1007/s11110-010-9065-3
  44. Yurovsky, Yu.G., 2000. Evaluation of the Submarine Discharge of Karst Waters in the Region of Cape Aiya. Physical Oceanography, 10(3), pp. 283-286. doi:10.1007/BF02509225
  45. Kondrat'ev, S.I., Shchetinin, Yu.T., Dolotov, N.N. and Androsovich, A.I., 1998. Hydrological and Chemical Characteristics of the Submarine Freshwater Source near Cape Aiya. Physical Oceanography, 9(3), pp. 217-224. doi:10.1007/BF02523232
  46. Kondratev, S.I., Dolotov, V.V., Moiseev, Yu.G. and Shchetinin, Yu.T., 2000. Submarine Springs of Fresh Water in the Region from Cape Feolent to Cape Sarych. Physical Oceanography, 10(3), pp. 257-272. doi:10.1007/BF02509223
  47. Aleskerova, A., Kubryakov, A., Stanichny, S., Medvedeva, A., Plotnikov, E., Mizyuk, A. and Verzhevskaia, L., 2021. Characteristics of Topographic Submesoscale Eddies off the Crimea Coast from High-Resolution Satellite Optical Measurements. Ocean Dynamics, 71(6-7), pp. 655-677. doi:10.1007/s10236-021-01458-9
  48. Pasynkov, A.A. and Vakhrushev, B.A., 2017. The Submarine Water Sources in the South-East’s Crimean Areas. Scientific Notes of V. I. Vernadsky Crimean Federal University. Geography. Geology, 3(2), pp. 250-263. doi:10.37279/2413-1717 (in Russian).
  49. Kayukova, E.P. and Yurovsky, Y.G., 2016. Water Resources of the Crimea. Geoecology. Engineering geology. Hydrogeology. Geocryology, 1, pp. 25-32 (in Russian).
  50. Aleskerovа, A.A., Kubryakov, A.A., Goryachkin, Yu.N. and Stanichny, S.V., 2017. Propagation of Waters from the Kerch Strait in the Black Sea. Physical Oceanography, (6), pp. 47-57. doi:10.22449/1573-160X-2017-6-47-57
  51. Drozhzhin, V.M., Nikolaev, D.S., Lazarev, K.F. and Grashchenko, S.M., 1973. Geochemical Balance of Radioactive Elements in the Black and Azov Seas. Radiochemistry, 15(3), pp. 415-421 (in Russian).
  52. Key, R.M., Stallard, R.F., Moore, W.S. and Sarmiento, J.L., 1985. Distribution and Flux of 226Ra and 228Ra in the Amazon River Estuary. Journal of Geophysical Research: Oceans, 90(C4), pp. 6995-7004. doi:10.1029/JC090iC04p06995

Download the article (PDF)