Sea Breeze Circulation: Theory and Two-Dimensional Simulation (Review)

M. V. Shokurov, N. Yu. Kraevskaya

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: krayevskaja_n@mhi-ras.ru

Abstract

Purpose. Sea breeze circulation is a common mesoscale phenomenon near the coasts of water bodies. However, at the moment, a number of the published review papers on this topic remain small. Therefore, the purpose of the work is to complement the existing reviews on sea breezes by generalizing the available knowledge on the influence of air heating intensity near the land surface, atmosphere stratification, synoptic background wind and the Coriolis force upon the sea breeze circulation.

Methods and Results. An overview of the results of studies involving the theoretical research methods, namely linear theory and two-dimensional numerical simulation, is presented. At first, the sea breeze circulation is considered within the framework of linear theory. Further, a technical description of two-dimensional models and the breeze features obtained applying these models are presented. The published works having been reviewed made it possible to consider the influence of four main factors (heat flux, atmosphere stratification, background synoptic wind and the Coriolis force) upon the breeze circulation.

Conclusions. Within the framework of linear theory, the breeze circulation represents an internal inertial-gravity wave with a diurnal period. Depending on the uniformity of vertical profile of the background synoptic wind, its influence on the linear sea breeze circulation leads to the asymmetry of circulation relative to the coast and to limitation of the breeze height. In a nonlinear regime, the important feature of breeze circulation obtained by applying numerical simulation consists in formation of a gravity current propagating over the surface. The nonlinear regime implies a fairly clear dependence of the velocity of gravity current front propagation on its height. The main manifestation of the background wind influence upon the gravity current is the change in its height that results in formation of a stationary or rapidly spreading current. Due to the Coriolis force influence, both within the framework of linear theory and in the nonlinear regime, an along-coastal velocity component is formed that leads to a decrease of the velocity component perpendicular to the coastline.

Keywords

sea breeze circulation, linear theory, numerical simulation, internal gravity waves

Acknowledgements

The investigation was carried out within the framework of the theme of state assignment of FSBSI FRC MHI FNNN-2024-0014.

Original russian text

Original Russian Text © M. V. Shokurov, N. Yu. Kraevskaya, 2024, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 40, Iss. 4, pp. 493–513 (2024)

For citation

Shokurov, M.V. and Kraevskaya, N.Yu., 2024. Sea Breeze Circulation: Theory and Two-Dimensional Simulation (Review). Physical Oceanography, 31(4), pp. 447-466.

References

  1. Anthes, R.A., 1978. The Height of the Planetary Boundary Layer and the Production of Circulation in a Sea Breeze Model. Journal of the Atmospheric Sciences, 35(7), pp. 1231-1239. doi:10.1175/1520-0469(1978)035%3C1231:THOTPB%3E2.0.CO;2
  2. Feliks, Y., 1994. An Analytical Model of the Diurnal Oscillation of the Inversion Base Due to the Sea Breeze. Journal of the Atmospheric Sciences, 51(7), pp. 991-998. doi:10.1175/1520-0469(1994)051%3C0991:AAMOTD%3E2.0.CO;2
  3. Jin, Y., Koch, S.E., Lin, Y.-L., Ralph, F.M. and Chen, C., 1996. Numerical Simulations of an Observed Gravity Current and Gravity Waves in an Environment Characterized by Complex Stratification and Shear. Journal of the Atmospheric Sciences, 53(23), pp. 3570-3588. doi:10.1175/1520-0469(1996)053%3C3570:NSOAOG%3E2.0.CO;2
  4. Tijm, A.B.C., Holtslag, A.A.M. and van Delden, A.J., 1999. Observations and Modeling of the Sea Breeze with the Return Current. Monthly Weather Review, 127(5), pp. 625-640. doi:10.1175/1520-0493(1999)127%3C0625:OAMOTS%3E2.0.CO;2
  5. Yan, H. and Anthes, R.A., 1988. The Effect of Variations in Surface Moisture on Mesoscale Circulation. Monthly Weather Review, 116(1), pp. 192-208. doi:10.1175/1520-0493(1988)116%3C0192:TEOVIS%3E2.0.CO;2
  6. Bryan, G.H. and Rotunno, R., 2014. The Optimal State for Gravity Currents in Shear. Journal of the Atmospheric Sciences, 71(1), pp. 448-468. doi:10.1175/JAS-D-13-0156.1
  7. Du, Y. and Rotunno, R., 2018. Diurnal Cycle of Rainfall and Winds near the South Coast of China. Journal of the Atmospheric Sciences, 75(6), pp. 2065-2082. doi:10.1175/JAS-D-17-0397.1
  8. Franchito, S.H., Rao, V.B., Stech, J.L. and Lorenzzetti, J.A., 1998. The Effect of Coastal Upwelling on the Sea-Breeze Circulation at Cabo Frio, Brazil: A Numerical Experiment. Annales Geophysicae, 16, pp. 866-881. doi:10.1007/s00585-998-0866-3
  9. Dailey, P.S. and Fovell, R.G., 1999. Numerical Simulation of the Interaction between the Sea-Breeze Front and Horizontal Convective Rolls. Part I: Offshore Ambient Flow. Monthly Weather Review, 127(5), pp. 858-878. doi:10.1175/1520-0493(1999)127%3C0858:NSOTIB%3E2.0.CO;2
  10. Gilliam, R.C., Raman, S. and Niyogi, D.D.S., 2004. Observational and Numerical Study on the Influence of Large-Scale Flow Direction and Coastline Shape on Sea-Breeze Evolution. Boundary-Layer Meteorology, 111, pp. 275-300. doi:10.1023/B:BOUN.0000016494.99539.5a
  11. Chen, X., Zhang, F. and Zhao, K., 2016. Diurnal Variations of the Land-Sea Breeze and Its Related Precipitation over South China. Journal of the Atmospheric Sciences, 73(12), pp. 4793-4815. doi:10.1175/JAS-D-16-0106.1
  12. Clappier, A., Martilli, A., Grossi, P., Thunis, P., Pasi, F., Krueger, B.C., Calpini, B., Graziani, G., van den Bergh, H., 2000. Effect of Sea Breeze on Air Pollution in the Greater Athens Area. Part I: Numerical Simulations and Field Observations. Journal of Applied Meteorology and Climatology, 39(4), pp. 546-562. doi:10.1175/1520-0450(2000)039%3C0546:EOSBOA%3E2.0.CO;2
  13. Bastin, S., Drobinski, P., Dabas, A., Delville, P., Reitebuch, O. and Werner, C., 2005. Impact of the Rhône and Durance Valleys on Sea-Breeze Circulation in the Marseille Area. Atmospheric Research, 74(1-4), pp. 303-328. doi:10.1016/j.atmosres.2004.04.014
  14. Soler, M.R., Arasa, R., Merino, M., Olid, M. and Ortega, S., 2011. Modelling Local Sea-Breeze Flow and Associated Dispersion Patterns over a Coastal Area in North-East Spain: A Case Study. Boundary-Layer Meteorology, 140, pp. 37-56. doi:10.1007/s10546-011-9599-z
  15. Miller, S.T.K., Keim, B.D., Talbot, R.W. and Mao, H., 2003. Sea Breeze: Structure, Forecasting, and Impacts. Reviews of Geophysics, 41(3), 1011. doi:10.1029/2003RG000124
  16. Crosman, E.T. and Horel, J.D., 2010. Sea and Lake Breezes: A Review of Numerical Studies. Boundary-Layer Meteorology, 137, pp. 1-29. doi:10.1007/s10546-010-9517-9
  17. Pearson, R.A., 1973. Properties of the Sea Breeze Front as Shown by a Numerical Model. Journal of Atmospheric Sciences, 30(6), pp. 1050-1060. doi:10.1175/1520-0469(1973)030%3C1050:POTSBF%3E2.0.CO;2
  18. Robinson, F.J., Patterson, M.D. and Sherwood, S.C., 2013. A Numerical Modeling Study of the Propagation of Idealized Sea-Breeze Density Currents. Journal of the Atmospheric Sciences, 70(2), pp. 653-668. doi:10.1175/JAS-D-12-0113.1
  19. Estoque, M.A., 1962. The Sea Breeze as a Function of the Prevailing Synoptic Situation. Journal of Atmospheric Sciences, 19(3), pp. 244-250. doi:10.1175/1520-0469(1962)019%3C0244:TSBAAF%3E2.0.CO;2
  20. Liu, C. and Moncrieff, M.W., 1996. A Numerical Study of the Effects of Ambient Flow and Shear on Density Currents. Monthly Weather Review, 124(10), pp. 2282-2303. doi:10.1175/1520-0493(1996)124%3C2282:ANSOTE%3E2.0.CO;2
  21. Arritt, R.W., 1993. Effects of the Large-Scale Flow on Characteristic Features of the Sea Breeze. Journal of Applied Meteorology and Climatology, 32(1), pp. 116-125. doi:10.1175/1520-0450(1993)032%3C0116:EOTLSF%3E2.0.CO;2
  22. Haurwitz, B., 1947. Comments on the Sea-Breeze Circulation. Journal of Atmospheric Sciences, 4(1), pp. 1-8. doi:10.1175/1520-0469(1947)004%3C0001:COTSBC%3E2.0.CO;2
  23. Yan, H. and Anthes, R.A., 1987. The Effect of Latitude on the Sea Breeze. Monthly Weather Review, 115(5), pp. 936-956. doi:10.1175/1520-0493(1987)115%3C0936:TEOLOT%3E2.0.CO;2
  24. Walsh, J.E., 1974. Sea Breeze Theory and Applications. Journal of Atmospheric Sciences, 31(8), pp. 2012-2026. doi:10.1175/1520-0469(1974)031%3C2012:SBTAA%3E2.0.CO;2
  25. Kimura, R. and Eguchi, T., 1978. On Dynamical Processes of Sea- and Land-Breeze Circulation. Journal of the Meteorological Society of Japan. Ser. II, 56(2), pp. 67-85. doi:10.2151/jmsj1965.56.2_67
  26. Porson, A., Steyn, D.G. and Schayes, G., 2007. Sea-Breeze Scaling from Numerical Model Simulations, Part I: Pure Sea Breezes. Boundary-Layer Meteorology, 122, pp. 17-29. doi:10.1007/s10546-006-9090-4
  27. Dalu, G.A. and Pielke, R.A., 1989. An Analytical Study of the Sea Breeze. Journal of the Atmospheric Sciences, 46(12), pp. 1815-1825. doi:10.1175/1520-0469(1989)046%3C1815:AASOTS%3E2.0.CO;2
  28. Estoque, M.A., 1961. A Theoretical Investigation of the Sea Breeze. Quarterly Journal of the Royal Meteorological Society, 87(372), pp. 136-146. doi:10.1002/qj.49708737203
  29. Mak, M.K. and Walsh, J.E., 1976. On the Relative Intensities of Sea and Land Breezes. Journal of the Atmospheric Sciences, 33(2), pp. 242-251. doi:10.1175/1520-0469(1976)033%3C0242:OTRIOS%3E2.0.CO;2
  30. Mahrer, Y. and Pielke, R.A., 1977. The Effects of Topography on Sea and Land Breezes in a Two-Dimensional Numerical Model. Monthly Weather Review, 105(9), pp. 1151-1162. doi:10.1175/1520-0493(1977)105%3C1151:TEOTOS%3E2.0.CO;2
  31. Kikuchi, Y., Arakawa, S., Kimur, F., Sharasaki, K. and Nagano Y., 1981. Numerical Study on the Effects of Mountains on the Land and Sea Breeze Circulation in the Kanto District. Journal of the Meteorological Society of Japan. Ser. II, 59(5), pp. 723-738. doi:10.2151/jmsj1965.59.5_723
  32. McPherson, R.D., 1970. A Numerical Study of the Effect of a Coastal Irregularity on the Sea Breeze. Journal of Applied Meteorology and Climatology, 9(5), pp. 767-777. doi:10.1175/1520-0450(1970)009%3C0767:ANSOTE%3E2.0.CO;2
  33. Neumann, J. and Mahrer, Y., 1975. A Theoretical Study of the Lake and Land Breezes of Circular Lakes. Monthly Weather Review, 103(6), pp. 474-485. doi:10.1175/1520-0493(1975)103%3C0474:ATSOTL%3E2.0.CO;2
  34. Gille, S.T. and Llewellyn Smith, S.G., 2014. When Land Breezes Collide: Converging Diurnal Winds over Small Bodies of Water. Quarterly Journal of the Royal Meteorological Society, 140(685), pp. 2573-2581. doi:10.1002/qj.2322
  35. Neumann, J. and Mahrer, Y., 1974. A Theoretical Study of the Sea and Land Breezes of Circular Islands. Journal of the Atmospheric Sciences, 31(8), pp. 2027-2039. doi:10.1175/1520-0469(1974)031%3C2027:ATSOTS%3E2.0.CO;2
  36. Xian, Z. and Pielke, R.A., 1991. The Effects of Width of Landmasses on the Development of Sea Breezes. Journal of Applied Meteorology, 30(9), pp. 1280-1304. doi:10.1175/1520-0450(1991)030%3C1280:TEOWOL%3E2.0.CO;2
  37. Drobinski, P. and Dubos, T., 2009. Linear Breeze Scaling: From Large‐Scale Land/Sea Breezes to Mesoscale Inland Breezes. Quarterly Journal of the Royal Meteorological Society, 135(644), pp. 1766-1775. doi:10.1002/qj.496
  38. Baker, R.D., Lynn, B.H., Boone, A., Tao, W.-K. and Simpson, J., 2001. The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze-Initiated Precipitation. Journal of Hydrometeorology, 2(2), pp. 193-211. doi:10.1175/1525-7541(2001)002%3C0193:TIOSMC%3E2.0.CO;2
  39. Avissar, R. Moran, M.D., Wu, G., Meroney, R.N. and Pielke, R.A., 1990. Operating Ranges of Mesoscale Numerical Models and Meteorological Wind Tunnels for the Simulation of Sea and Land Breezes. Boundary-Layer Meteorology, 50(1), pp. 227-275. doi:10.1007/BF00120526
  40. Abbs, D.J. and Physick, W.L., 1992. Sea-Breeze Observations and Modelling: A Review. Australian Meteorological Magazine, 41, pp. 7-19.
  41. Rotunno, R., 1983. On the Linear Theory of the Land and Sea Breeze. Journal of the Atmospheric Sciences, 40(8), pp. 1999-2009. doi:10.1175/1520-0469(1983)040%3C1999:OTLTOT%3E2.0.CO;2
  42. Niino, H., 1987. The Linear Theory of Land and Sea Breeze Circulation. Journal of the Meteorological Society of Japan. Ser. II, 65(6), pp. 901-921. doi:10.2151/jmsj1965.65.6_901
  43. Benjamin, T.B., 1968. Gravity Currents and Related Phenomena. Journal of Fluid Mechanics, 31(2), pp. 209-248. doi:10.1017/S0022112068000133
  44. Xu, Q., 1992. Density Currents in Shear Flows – A Two-Fluid Model. Journal of the Atmospheric Sciences, 49(6), pp. 511-524. doi:10.1175/1520-0469(1992)049%3C0511:DCISFA%3E2.0.CO;2
  45. Biggs, W.G. and Graves, M.E., 1962. A Lake Breeze Index. Journal of Applied Meteorology and Climatology, 1(4), pp. 474-480. doi:10.1175/1520-0450(1962)001%3C0474:ALBI%3E2.0.CO;2
  46. Antonelli, M. and Rotunno, R., 2007. Large-Eddy Simulation of the Onset of the Sea Breeze. Journal of the Atmospheric Sciences, 64(12), pp. 4445-4457. doi:10.1175/2007JAS2261.1
  47. Pearce, R.P., 1955. The Calculation of a Sea‐Breeze Circulation in Terms of the Differential Heating across the Coastline. Quarterly Journal of the Royal Meteorological Society, 81(349), pp. 351-381. doi:10.1002/qj.49708134906
  48. Du, Y., Rotunno, R. and Zhang, F., 2019. Impact of Vertical Wind Shear on Gravity Wave Propagation in the Land-Sea-Breeze Circulation at the Equator. Journal of the Atmospheric Sciences, 76(10), pp. 3247-3265. doi:10.1175/JAS-D-19-0069.1
  49. Pielke, R.A., 1974. A Three-Dimensional Numerical Model of the Sea Breezes over South Florida. Monthly Weather Review, 102(2), pp. 115-139. doi:10.1175/1520-0493(1974)102%3C0115:ATDNMO%3E2.0.CO;2
  50. Steyn, D.G. and McKendry, I.G., 1988. Quantitative and Qualitative Evaluation of a Three-Dimensional Mesoscale Numerical Model Simulation of a Sea Breeze in Complex Terrain. Monthly Weather Review, 116(10), pp. 1914-1926. doi:10.1175/1520-0493(1988)116%3C1914:QAQEOA%3E2.0.CO;2
  51. Yimin, M. and Lyons, T.J., 2000. Numerical Simulation of a Sea Breeze under Dominant Synoptic Conditions at Perth. Meteorology and Atmospheric Physics, 73, pp. 89-103. doi:10.1007/s007030050067
  52. Zhu, M. and Atkinson, B.W., 2004. Observed and Modelled Climatology of the Land-Sea Breeze Circulation over the Persian Gulf. International Journal of Climatology, 24(7), pp. 883-905. doi:10.1002/joc.1045
  53. Zhang, Y., Chen, Y.-L., Schroeder, T.A. and Kodama, K., 2005. Numerical Simulations of Sea-Breeze Circulations over Northwest Hawaii. Weather and Forecasting, 20(6), pp. 827-846. doi:10.1175/WAF859.1
  54. Challa, V.S., Indracanti, J., Rabarison, M.K., Patrick, C., Baham, J.M., Young, J., Hughes, R., Hardy, M.G., Swanier, S.J. [et. al.], 2009. A Simulation Study of Mesoscale Coastal Circulations in Mississippi Gulf Coast. Atmospheric Research, 91(1), pp. 9-25. doi:10.1016/j.atmosres.2008.05.004
  55. Efimov, V.V. and Barabanov, V.S., 2011. Development of the Summer Breeze Circulation in the West Part of the Black Sea. Physical Oceanography, 20(5), pp. 335-346. doi:10.1007/s11110-011-9089-3
  56. Arrillaga, J.A., Yagüe, C., Sastre, M. and Román-Cascón, C., 2016. A Characterization of Sea-Breeze Events in the Eastern Cantabrian Coast (Spain) from Observational Data and WRF Simulations. Atmospheric Research, 181, pp. 265-280. doi:10.1016/j.atmosres.2016.06.021
  57. Mitsumoto, S., Ueda, H. and Ozoe, H., 1983. A Laboratory Experiment on the Dynamics of the Land and Sea Breeze. Journal of the Atmospheric Sciences, 40(5), pp. 1228-1240. doi:10.1175/1520-0469(1983)040%3C1228:ALEOTD%3E2.0.CO;2
  58. Intrieri, J.M., Little, C.G., Shaw, W.J., Banta, R.M., Durkee, P.A. and Hardesty, R.M., 1990. The Land/Sea Breeze Experiment (LASBEX). Bulletin of the American Meteorological Society, 71(5), pp. 656-664. doi:10.1175/1520-0477-71.5.656
  59. Simpson, J.E. and Britter, R.E., 1980. A Laboratory Model of an Atmospheric Mesofront. Quarterly Journal of the Royal Meteorological Society, 106(449), pp. 485-500. doi:10.1002/qj.49710644907
  60. Rottman, J.W. and Simpson, J.E., 1983. Gravity Currents Produced by Instantaneous Releases of a Heavy Fluid in a Rectangular Channel. Journal of Fluid Mechanics, 135, pp. 95-110. doi:10.1017/S0022112083002979
  61. Shin, J.O., Dalziel, S.B. and Linden, P.F., 2004. Gravity Currents Produced by Lock Exchange. Journal of Fluid Mechanics, 521, pp. 1-34. doi:10.1017/S002211200400165X
  62. Fisher, E.L., 1960. An Observational Study of the Sea Breeze. Journal of the Atmospheric Sciences, 17(6), pp. 645-660. doi:10.1175/1520-0469(1960)017%3C0645:AOSOTS%3E2.0.CO;2
  63. Tijm, A.B.C., Van Delden, A.J. and Holtslag, A.A.M., 1999. The Inland Penetration of Sea Breezes. Contributions to Atmospheric Physics, 72(4), pp. 317-328.
  64. Wakimoto, R.M. and Atkins, N.T., 1994. Observations of the Sea-Breeze Front during CaPE. Part I: Single-Doppler, Satellite, and Cloud Photogrammetry Analysis. Monthly Weather Review, 122(6), pp. 1092-1114. doi:10.1175/1520-0493(1994)122%3C1092:OOTSBF%3E2.0.CO;2
  65. Anjos, M. and Lopes, A., 2019. Sea Breeze Front Identification on the Northeastern Coast of Brazil and Its Implications for Meteorological Conditions in the Sergipe Region. Theoretical and Applied Climatology, 137, pp. 2151-2165. doi:10.1007/s00704-018-2732-x
  66. Schmidt, F.H., 1947. An Elementary Theory of the Land- and Sea-Breeze Circulation. Journal of the Atmospheric Sciences, 4(1), pp. 9-20. doi:10.1175/1520-0469(1947)004%3C0009:AETOTL%3E2.0.CO;2
  67. Malkus, J.S. and Stern, M.E., 1953. The Flow of a Stable Atmosphere over a Heated Island, Part 1. Journal of the Atmospheric Sciences, 10(1), pp. 30-41. doi:10.1175/1520-0469(1953)010%3C0030:TFOASA%3E2.0.CO;2
  68. Geisler, J.E. and Bretherton, F.P., 1969. The Sea-Breeze Forerunner. Journal of the Atmospheric Sciences, 26(1), pp. 82–95. doi:10.1175/1520-0469(1969)026%3C0082:TSBF%3E2.0.CO;2
  69. Kimura, R., 1975. Dynamics of Steady Convections over Heat and Cool Islands. Journal of the Meteorological Society of Japan. Ser. II, 53(6), pp. 440-457. doi:10.2151/jmsj1965.53.6_440
  70. Neumann, J., 1977. On the Rotation Rate of the Direction of Sea and Land Breezes. Journal of the Atmospheric Sciences, 34(12), pp. 1913-1917. doi:10.1175/1520-0469(1977)034%3C1913:OTRROT%3E2.0.CO;2
  71. Qian, T., Epifanio, C.C. and Zhang, F., 2009. Linear Theory Calculations for the Sea Breeze in a Background Wind: The Equatorial Case. Journal of the Atmospheric Sciences, 66(6), pp. 1749-1763. doi:10.1175/2008JAS2851.1
  72. Jiang, Q., 2012. On Offshore Propagating Diurnal Waves. Journal of the Atmospheric Sciences, 69(5), pp. 1562-1581. doi:10.1175/JAS-D-11-0220.1
  73. Drobinski, P., Rotunno, R. and Dubos, T., 2011. Linear Theory of the Sea Breeze in a Thermal Wind. Quarterly Journal of the Royal Meteorological Society, 137(659), pp. 1602-1609. doi:10.1002/qj.847
  74. Miles, J.W., 1961. On the Stability of Heterogeneous Shear Flows. Journal of Fluid Mechanics, 10(4), pp. 496-508. doi:10.1017/S0022112061000305
  75. Booker, J.R. and Bretherton, F.P., 1967. The Critical Layer for Internal Gravity Waves in a Shear Flow. Journal of Fluid Mechanics, 27(3), pp. 513-539. doi:10.1017/S0022112067000515
  76. Jones, W.L., 1967. Propagation of Internal Gravity Waves in Fluids with Shear Flow and Rotation. Journal of Fluid Mechanics, 30(3), pp. 439-448. doi:10.1017/S0022112067001521
  77. Grimshaw, R., 1975. Internal Gravity Waves: Critical Layer Absorption in a Rotating Fluid. Journal of Fluid Mechanics, 70(2), pp. 287-304. doi:10.1017/S0022112075002030
  78. Shokurov, M.V. and Kraevskaya, N.Yu., 2022. Critical Levels of the Sea Breeze Circulation within the Framework of Linear Theory. Physical Oceanography, 29(6), pp. 602-618. doi:10.22449/1573-160X-2022-6-602-618
  79. Fisher, E.L., 1961. A Theoretical Study of the Sea Breeze. Journal of the Atmospheric Sciences, 18(2), pp. 216-233. doi:10.1175/1520-0469(1961)018%3C0216:ATSOTS%3E2.0.CO;2
  80. Martin, C.L. and Pielke, R.A., 1983. The Adequacy of the Hydrostatic Assumption in Sea Breeze Modeling over Flat Terrain. Journal of the Atmospheric Sciences, 40(6), pp. 1472-1481. doi:10.1175/1520-0469(1983)040%3C1472:TAOTHA%3E2.0.CO;2
  81. Yang, X., 1991. A Study of Nonhydrostatic Effects in Idealized Sea Breeze Systems. Boundary-Layer Meteorology, 54, pp. 183-208. doi:10.1007/BF00119419
  82. Neumann, J. and Mahrer, Y., 1971. A Theoretical Study of the Land and Sea Breeze Circulation. Journal of the Atmospheric Sciences, 28(4), pp. 532-542. doi:10.1175/1520-0469(1971)028%3C0532:ATSOTL%3E2.0.CO;2
  83. Segal, M. and Pielke, R.A., 1985. The Effect of Water Temperature and Synoptic Winds on the Development of Surface Flows over Narrow, Elongated Water Bodies. Journal of Geophysical Research: Oceans, 90(C3), pp. 4907-4910. doi:10.1029/JC090iC03p04907
  84. Pielke, R.A., 1974. A Comparison of Three-Dimensional and Two-Dimensional Numerical Predictions of Sea Breezes. Journal of the Atmospheric Sciences, 31(6), pp. 1577-1585. doi:10.1175/1520-0469(1974)031%3C1577:ACOTDA%3E2.0.CO;2
  85. Anthes, R.A. and Warner, T.T., 1978. Development of Hydrodynamic Models Suitable for Air Pollution and Other Mesometeorological Studies. Monthly Weather Review, 106(8), pp. 1045-1078. doi:10.1175/1520-0493(1978)106%3C1045:DOHMSF%3E2.0.CO;2
  86. Richiardone, R. and Pearson, R.A., 1983. Inland Convection and Energy Transfers in a Sea Breeze Model. Quarterly Journal of the Royal Meteorological Society, 109(460), pp. 325-338. doi:10.1002/qj.49710946006
  87. Bechtold, P., Pinty, J.-P. and Mascart, F., 1991. A Numerical Investigation of the Influence of Large-Scale Winds on Sea-Breeze- and Inland-Breeze-Type Circulations. Journal of Applied Meteorology and Climatology, 30(9), pp. 1268-1279. doi:10.1175/1520-0450(1991)030%3C1268:ANIOTI%3E2.0.CO;2
  88. Ookouchi, Y., 1992. On the Parameter Dependence of Two-Dimensional Sea-Breeze Models. Journal of the Meteorological Society of Japan. Ser. II, 70(2), pp. 689-701. doi:10.2151/jmsj1965.70.2_689
  89. Porson, A., Steyn, D.G. and Schayes, G.S., 2007. Formulation of an Index for Sea Breezes in Opposing Winds. Journal of Applied Meteorology and Climatology, 46(8), pp. 1257-1263. doi:10.1175/JAM2525.1
  90. Skamarock, W.C. and Klemp, J.B., 2008. A time-Split Nonhydrostatic Atmospheric Model for Weather Research and Forecasting Applications. Journal of Computational Physics, 227(7), pp. 3465-3485. doi:10.1016/j.jcp.2007.01.037
  91. Steyn, D.G., 2003. Scaling the Vertical Structure of Sea Breezes Revisited. Boundary-Layer Meteorology, 107, pp. 177-188. doi:10.1023/A:1021568117280

Download the article (PDF)