Investigation of the Relationship between Partial Pressure of Carbon Dioxide and Sea Surface Temperature in the Cyclic Seasonal Variations in the Black Sea

D. A. Sergeev1, 2, ✉, Yu. I. Troitskaya1, O. S. Ermakova1, N. A. Orekhova3

1 Federal Research Center A. V. Gaponov-Grekhov Institute of Applied Physics of RAS, Nizhny Novgorod, Russian Federation

2 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation

3 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: daniil@ipfran.ru

Abstract

Purpose. The purpose of the study consists in describing the parameterization based on the field data, which take into account the relationship between the variability of рСО2 sw and the state of the surface water layer, depending on the sea surface temperature and allowing for geographical location and seasonality at the example of the Black Sea.

Methods and Results. The main seasonal trends of changes in рСО2 related to the variations in sea surface temperature are proposed based on special processing of direct measurement data on рСО2 of the surface layer obtained in the cruises of R/V Professor Vodyanitsky in 2015–2023 and at the stationary observation point of the Black Sea Hydrophysical Subsatellite Polygon (BSHSP), Katsiveli, in 2012–2022. The basic approach consists in describing the variations in рСО2 sw distribution over the sea surface using the linear approximations (trends) for three fixed seasons represented by four months (January – April, May – August and September – December) in each of the grid cells. It is shown that both in the coastal zone and in the open sea, the hysteresis dependences of рСО2 upon the sea surface temperature are manifested: the ratios of partial pressure and temperature during the periods of spring warming and autumn cooling are different. The reason for the observed hysteresis is related to a shift of the рСО2 sw fluctuation phase and a temperature change of about 1.5–2 months.

Conclusions. The dependence of рСО2 upon the sea surface temperature in an autumn-winter period turns out to be close to the dependences typical for the oceanic conditions in mid latitudes of the Northern Hemisphere (the Atlantic and Pacific oceans). This can indicate the universal mechanisms of influence of the sea surface temperature (SST) upon рСО2 sw both for the local conditions in the Black Sea and for the open ocean during a certain seasonal period. Besides, such a similarity of dependences can mean that, most likely, SST directly conditions a value of рСО2 sw, whereas biological activity is not a determining factor. The obtained results can be used for describing and studying the variations of the СО2 sea – air fluxes in the Black Sea.

Keywords

рСО2, sea surface temperature, Black Sea

Acknowledgements

TThe study was carried out with financial support from grant No. 169-15-2023-002 (dated 01.03.2023) provided by the Federal Service for Hydrometeorology and Environmental Monitoring and within the framework of state assignment of FSBSI FRC MHI FNNN-2022-0002 on the theme “Monitoring of the carbonate system, CO2 content and fluxes in the marine environment of the Black and Azov seas”. The data were analyzed and compared to the open ocean data with the support of the RSF project No. 24-17-00299.

Original russian text

Original Russian Text © The Authors, 2024, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 40, Iss. 6, pp. 805–820 (2024)

For citation

Sergeev, D.A., Troitskaya, Yu.I., Ermakova, O.S. and Orekhova, N.A., 2024. Investigation of the Relationship between Partial Pressure of Carbon Dioxide and Sea Surface Temperature in the Cyclic Seasonal Variations in the Black Sea. Physical Oceanography, 31(6), pp. 757-771.

References

  1. Sarmiento, J.L. and Gruber, N., 2002. Sinks for Anthropogenic Carbon. Physics Today, 55(8), pp. 30-36. https://doi.org/10.1063/1.1510279
  2. Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Bakker, D.C.E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I.T. [et al.], 2023. Global Carbon Budget 2023. Earth System Science Data, 15(12), pp. 5301-5369. https://doi.org/10.5194/essd-15-5301-2023
  3. Le Quéré, C., Raupach, M.R., Canadell, J.G., Marland, G., Bopp, L., Ciais, P., Conway, T.J., Doney, S.C., Feely, R.A. [et al.], 2009. Trends in the Sources and Sinks of Carbon Dioxide. Nature Geoscience, 2(12), pp. 831-836. https://doi.org/10.1038/ngeo689
  4. Le Quéré, C., Aumont, O., Bopp, L., Bousquet, P., Ciais, P., Francey, R., Heimann, M., Keeling, C.D., Keeling, R.F. [et al.], 2003. Two Decades of Ocean СО2 Sink and Variability. Tellus B: Chemical and Physical Meteorology, 55(2), pp. 649-656. https://doi.org/10.3402/tellusb.v55i2.16719
  5. Obata, A. and Kitamura, Y., 2003. Interannual Variability of the Sea-Air Exchange of СО2 from 1961 to 1998 Simulated with a Global Ocean Circulation-Biogeochemistry Model. Journal of Geophysical Research: Oceans, 108(C11), 3337. https://doi.org/10.1029/2001JC001088
  6. McKinley, G.A., Rödenbeck, C., Gloor, M., Houweling, S. and Heimann, M., 2004. Pacific Dominance to Global Air-Sea СО2 Flux Variability: A Novel Atmospheric Inversion Agrees with Ocean Models. Geophysical Research Letters, 31(22), L22308. https://doi.org/10.1029/2004GL021069
  7. Doney, S.C., Lima, I., Feely, R.A., Glover, D.M., Lindsay, K., Mahowald, N., Moore, J.K. and Wanninkhof, R., 2009. Mechanisms Governing Interannual Variability in Upper-Ocean Inorganic Carbon System and Air-Sea СО2 Fluxes: Physical Climate and Atmospheric Dust. Deep Sea Research II, 56(8-10), pp. 640-655. https://doi.org/10.1016/j.dsr2.2008.12.006.
  8. Law, R.M., Ziehn, T., Matear, R.J., Lenton, A., Chamberlain, M.A., Stevens, L.E., Wang, Y.-P., Srbinovsky, J., Bi, D. [et al.], 2017. The Carbon Cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 1: Model Description and Pre-Industrial Simulation. Geoscientific Model Development, 10(7), pp. 2567-2590. https://doi.org/10.5194/gmd-10-2567-2017
  9. Hauck, J., Köhler, P., Wolf-Gladrow, D. and Völker, C., 2016. Iron Fertilisation and Century-Scale Effects of Open Ocean Dissolution of Olivine in a Simulated СО2 Removal Experiment. Environmental Research Letters, 11(2), 024007. https://doi.org/10.1088/1748-9326/11/2/024007
  10. Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P. and Tans, P.P., 2000. Regional Changes in Carbon Dioxide Fluxes of Land and Oceans since 1980. Science, 290(5495), pp. 1342-1346. https://doi.org/ 10.1126/science.290.5495.1342
  11. Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M., 2003. СО2 Flux History 1982–2001 Inferred from Atmospheric Data Using a Global Inversion of Atmospheric Transport. Atmospheric Chemistry and Physics, 3(6), pp. 1919-1964. https://doi.org/10.5194/acp-3-1919-2003
  12. Saeki, T. and Patra, P.K., 2017. Implications of Overestimated Anthropogenic СО2 Emissions on East Asian and Global Land CO2 Flux Inversion. Geoscience Letters, 4(1), 9. https://doi.org/10.1186/s40562-017-0074-7
  13. Van der Laan-Luijkx, I.T., Van der Velde, I.R., Van der Veen, E., Tsuruta, A., Stanislawska, K., Babenhauserheide, A., Zhang, H.F., Liu, Y., He, W. [et al.], 2017. The Carbon Tracker Data Assimilation Shell (CTDAS) v1.0: Implementation and Global Carbon Balance 2001–2015. Geoscientific Model Development, 10(7), pp. 2785-2800. https://doi.org/10.5194/gmd-10-2785-2017
  14. Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F.-M., Chédin, A. and Ciais, P., 2005. Inferring СО2 Sources and Sinks from Satellite Observations: Method and Application to TOVS Data. Journal of Geophysical Research: Atmospheres, 110(D24), D24309. https://doi.org/10.1029/2005jd006390
  15. Takahashi, T., Feely, R.A., Weiss, R.F., Wanninkhof, R.H., Chipman, D.W., Sutherland, S.C. and Takahashi, T.T., 1997. Global Air-Sea Flux of СО2: An Estimate Based on Measurements of Sea-Air pСО2 Difference. Proceedings of the National Academy of Sciences of the USA, 94(16), pp. 8292-8299. https://doi.org/10.1073/pnas.94.16.8292
  16. Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.W., Hales, B., Friederich, G., Chavez, F. [et al.], 2009. Climatological Mean and Decadal Change in Surface Ocean pCO2, and Net Sea-Air СО2 Flux over the Global Oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8–10), pp. 554-577. https://doi.org/10.1016/j.dsr2.2008.12.009
  17. Jähne, B., Münnich, K.O., Bösinger, R., Dutzi, A., Huber, W.A. and Libner, P., 1987. On the Parameters Influencing Air-Water Gas Exchange. Journal of Geophysical Research: Oceans, 92(C2), pp. 1937-1949. https://doi.org/10.1029/JC092iC02p01937
  18. Komori, S., Nagaosa, R. and Murakami, Y., 1993. Turbulence Structure and Mass Transfer across a Sheared Air-Water Interface in Wind-Driven Turbulence. Journal of Fluid Mechanics, 249, pp.161-183. https://doi.org/10.1017/S0022112093001120
  19. Wanninkhof, R., 1992. Relationship between Wind Speed and Gas Exchange over the Ocean. Journal of Geophysical Research, 97(C5), pp. 7373-7382. https://doi.org/10.1029/92JC00188
  20. Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M. and Nakaoka, S., 2014. A Global Surface Ocean fСО2 Climatology Based on a Feed-Forward Neural Network. Journal of Atmospheric and Oceanic Technology, 31(8), pp. 1838-1849. https://doi.org/10.1175/jtech-d-13-00137.1
  21. Rödenbeck, C., Bakker, D.C.E., Gruber, N., Iida, Y., Jacobson, A.R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S. [et al.], 2015. Data-Based Estimates of the Ocean Carbon Sink Variability – First Results of the Surface Ocean pСО2 Mapping Intercomparison (SOCOM). Biogeosciences, 12(23), pp. 7251-7278. https://doi.org/10.5194/bg-12-7251-2015
  22. Bakker, D.C.E., Pfeil, B., Landa, C.S., Metzl, N., O’Brien, K.M., Olsen, A., Smith, K., Cosca, C., Harasawa, S. [et al.], 2016. A Multi-Decade Record of High-Quality fСО2 Data in Version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data Discussions, 8(2), pp. 383-413. https://doi.org/10.5194/essd-2016-15
  23. Landschützer, P., Gruber, N. and Bakker, D.C.E., 2016. Decadal Variations and Trends of the Global Ocean Carbon Sink. Global Biogeochemical Cycles, 30(10), pp. 1396-1417. https://doi.org/10.1002/2015gb005359
  24. McKinley, G.A., Fay, A.R., Lovenduski, N.S. and Pilcher, D.J., 2017. Natural Variability and Anthropogenic Trends in the Ocean Carbon Sink. Annual Review of Marine Science, 9(1), pp. 125-150. https://doi.org/10.1146/annurevmarine-010816-060529
  25. Gregor, L., Lebehot, A.D., Kok, S. and Scheel Monteiro, P.M., 2019. A Comparative Assessment of the Uncertainties of Global Surface Ocean СО2 Estimates Using a Machine-Learning Ensemble (CSIR-ML6 Version 2019a) – Have we Hit the Wall? Geoscientific Model Development, 12(12), pp. 5113-5136. https://doi.org/10.5194/gmd-12-5113-2019
  26. Gruber, N., Clement, D., Carter, B.R., Feely, R.A., van Heuven, S., Hoppema, M., Ishii, M., Key, R.M., Kozyr, A. [et al.], 2019. The Oceanic Sink for Anthropogenic СО2 from 1994 to 2007. Science, 363(6432), pp. 1193-1199. https://doi.org/10.1126/science.aau5153
  27. Denvil-Sommer, A., Gehlen, M., Vrac, M. and Mejia, C., 2019. LSCE-FFNN-v1: A Two-Step Neural Network Model for the Reconstruction of Surface Ocean pСО2 over the Global Ocean. Geoscientific Model Development, 12(5), pp. 2091-2105. https://doi.org/10.5194/gmd-12-2091-2019
  28. Iida, Y., Takatani, Y., Kojima, A. and Ishii, M., 2020. Global Trends of Ocean СО2 Sink and Ocean Acidification: An Observation-Based Reconstruction of Surface Ocean Inorganic Carbon Variables. Journal of Oceanography, 77(2), pp. 323-358. https://doi.org/10.1007/s10872-020-00571-5
  29. Gulev, S.K., 2023. Global Climate Change and the Oceans. Studies on Russian Economic Development, 34(6), pp. 738-745. https://doi.org/ 10.1134/S1075700723060060
  30. Pipko, I.I., Pugach, S.P., Repina, I.A., Dudarev, O.V., Charkin, A.N. and Semiletov, I.P., 2015. Distribution and Air-Sea Fluxes of Carbon Dioxide on the Chukchi Sea Shelf. Izvestiya, Atmospheric and Oceanic Physics, 51, pp. 1088-1102. https://doi.org/10.1134/S0001433815090133
  31. Bates, N.R., 2018. Seawater Carbonate Chemistry Distributions across the Eastern South Pacific Ocean Sampled as Part of the GEOTRACES Project and Changes in Marine Carbonate Chemistry over the Past 20 Years. Frontiers in Marine Science, 5, 398. https://doi.org/10.3389/fmars.2018.00398
  32. Bauer, J.E., Cai, W.-J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S. and Régnier, P.A.G., 2013. The Changing Carbon Cycle of the Coastal Ocean. Nature, 504, pp. 61-70. https://doi.org/10.1038/nature12857
  33. Lee, K., Wanninkhof, R., Takahashi, T., Doney, S.C. and Feely, R.A., 1998. Low Interannual Variability in Recent Oceanic Uptake of Atmospheric Carbon Dioxide. Nature, 396, pp. 155-159. https://doi.org/10.1038/24139
  34. Park, G.-H., Wanninkhof, R., Doney, S.C., Takahashi, T., Lee, K., Feely, R.A., Sabine, C.L., Triñanes, J. and Lima, I.D., 2010. Variability of Global Net Sea-Air СО2 Fluxes over the Last Three Decades Using Empirical Relationships. Tellus B: Chemical and Physical Meteorology, 62(5), pp. 352-368. https://doi.org/10.1111/j.1600-0889.2010.00498.x
  35. Khoruzhiy, D.S., 2010. Usage of Device Complex AS-C3 for Detection of Carbon Dioxide Partial Pressure and Inorganic Carbon Concentration in Sea Environment. MHI, 2010. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: MHI. Iss. 23, pp. 260-272 (in Russian).
  36. Garmashov, A., 2020. Hydrometeorological Monitoring on the Stationary Oceanographic Platform in the Black Sea. In: SGEM, 2020. 20th International Multidisciplinary Scientific GeoConference SGEM 2020: Proceedings. Sofia, Bulgaria. Vol. 20, Book 3.1, pp. 171-176. https://doi.org/10.5593/sgem2020/3.1/s12.023
  37. Konovalov, S.K. and Orekhova, N.A., 2024. New View of the СО2 Content in Surface Waters of the Black Sea Based on Direct Measurements. Doklady Earth Science, 518, pp. 1737-1742. https://doi.org/10.1134/S1028334X24602943
  38. Watson, A.J., Schuster, U., Bakker, D.C.E., Bates, N.R., Corbière, A., González-Dávila, M., Friedrich, T., Hauck, J., Heinze, C. [et al.], 2009. Tracking the Variable North Atlantic Sink for Atmospheric СО2. Science, 326, pp. 1391-1393. https://doi.org/10.1126/science.1177394

Download the article (PDF)