“Bloom” of Сoccolithophores in the Black Sea Based on Remote Sensing Data Obtained in 1998–2023: Intensity and Frequency

T. Ya. Churilova1, ✉, V. V. Suslin2, O. V. Krivenko1

1 A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, Russian Federation

2 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: tanya.churilova@gmail.com

Abstract

Purpose. Monitoring of coccolithophore “bloom” is becoming increasingly important due to their influence on the biogeochemical cycles. The purpose of the study is to analyze the frequency, intensity and area of Gephyrocapsa huxleyi “bloom” in different sub-regions of the Black Sea, as well as to assess the effect of environmental conditions on the intensity and interannual variability of “bloom”.

Methods and Results. Based on the satellite data and using the regional algorithms, the values of chlorophyll a concentration, the particulate backscattering coefficient and the coefficient of light absorption by colored detrital matter were retrieved with a two-week averaging for different Black Sea sub-regions for the period 1998–2023. Application of the normalized anomalies made it possible to reveal the annual cycles of variability of these parameters, as well as to identify their common patterns and variability features in particular sub-regions of the sea.

Conclusions. It has been established that in early June in all the regions of the sea, the “bloom” of Gephyrocapsa huxleyi was regularly observed; at that it was characterized by a year-to-year variability in its intensity and area. High light intensity in the sea upper mixed layer is a key factor for a shift in the phytoplankton species structure and for the transition to Gephyrocapsa huxleyi dominance and “bloom” due to the physiologically determined ability of these algae to grow at an extremely high light intensity with no inhibition, whereas at similar light conditions the growth of other plankton microalgae is suppressed. In most sub-regions of the Black Sea, the “bloom” of Gephyrocapsa huxleyi is not followed by an increase in the phytoplankton biomass, only the structure of phytoplankton species changes. The exception is the coastal waters affected by the river runoffs: the “bloom” there is observed when the phytoplankton biomass grows. In the coastal waters during a cold period (December, February), the Gephyrocapsa huxleyi abundance sometimes increases due to a decrease of nutrient supply that results from weakening of the river runoffs and/or increasing stability of the water column. Decrease in phytoplankton supply with nutrients contributes to the competitive growth of coccolithophores as compared to other types of phytoplankton. The development of Gephyrocapsa huxleyi “bloom” in different seasons can reflect its genetic and physiological plasticity.

Keywords

coccolithophores, Gephyrocapsa huxleyi, Emiliania huxleyi, coccolithophore “bloom”, water bloom, chlorophyll concentration, light scattering, light absorption, colored detrital matter, remote sensing, Black Sea

Acknowledgements

The frequency, intensity and area of Gephyrocapsa huxleyi “bloom” in different sub-regions of the Black Sea were studied within the framework of a state assignment of FSBSI FRC MHI on theme No. FNNN-2023-0001, annual and interannual variability of bio-optical water features – within the framework of a state assignment of FRC IBSS on theme No. 124030100106-2, the long-term data series were obtained based on satellite data and using the regional algorithms within the framework of a state assignment of FSBSI FRC MHI on theme No. FNNN-2024-0012.

Original russian text

Original Russian Text © T. Ya. Churilova, V. V. Suslin, O. V. Krivenko, 2024, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 40, Iss. 6, pp. 853–877 (2024)

For citation

Churilova, T.Ya., Suslin, V.V. and Krivenko, O.V., 2024. “Bloom” of Сoccolithophores in the Black Sea Based on Remote Sensing Data Obtained in 1998–2023: Intensity and Frequency. Physical Oceanography, 31(6), pp. 802-825.

References

  1. Iglesias-Rodríguez, M.D., Brown, C.W., Doney, S.C., Kleypas, J., Kolber, D., Kolber, Z., Hayes, P.K. and Falkowski, P.G., 2002. Representing Key Phytoplankton Functional Groups in Ocean Carbon Cycle Models: Coccolithophorids. Global Biogeochemical Cycles, 16(4), 1100. https://doi.org/10.1029/2001GB001454
  2. Balch, W.M., 2018. The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores. Annual Review of Marine Science, 3(10), pp. 71-98. https://doi.org/10.1146/annurev-marine-121916-063319
  3. Balch, W.M., Holligan, P.M. and Kilpatrick, K.A., 1992. Calcification, Photosynthesis and Growth of the Bloom-Forming Coccolithophore, Emiliania Huxleyi. Continental Shelf Research, 12(12), pp. 1353-1374. https://doi.org/10.1016/0278-4343(92)90059-s
  4. Poulton, A.J., Adey, T.R., Balch, W.M. and Holligan, P.M., 2007. Relating Coccolithophore Calcification Rates to Phytoplankton Community Dynamics: Regional Differences and Implications for Carbon Export. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5-7), pp. 538-557. https://doi.org/10.1016/j.dsr2.2006.12.003
  5. Krumhardt, K.M., Lovenduski, N.S., Iglesias-Rodríguez, M.D. and Kleypas, J.A., 2017. Coccolithophore Growth and Calcification in a Changing Ocean. Progress in Oceanography, 159(23), pp. 276-295. https://doi.org/10.1016/j.pocean.2017.10.007
  6. Krumhardt, K.M., Lovenduski, N.S., Long, M.C., Levy, M., Lindsay, K., Moore, J.K. and Nissen C., 2019. Coccolithophore Growth and Calcification in an Acidified Ocean: Insights from Community Earth System Model Simulations Ocean. Journal of Advances in Modeling Earth Systems, 11(5), pp. 1418-1437. https://doi.org/10.1029/2018MS001483
  7. Krumhardt, K.M., Lovenduski, N.S., Freeman, N.M. and Bates, N.R., 2016. Apparent Increase in Coccolithophore Abundance in the Subtropical North Atlantic from 1990 to 2014. Biogeosciences, 13(4), pp. 1163-1177. https://doi.org/10.5194/bg-13-1163-2016
  8. Winter, A., Henderiks, J., Beaufort, L., Rickaby, R.E.M. and Brown, C.W., 2014. Poleward Expansion of the Coccolithophore Emiliania Huxleyi. Journal of Plankton Research, 36(2), pp. 316-325. https://doi.org/10.1093/plankt/fbt110
  9. Read, B.A., Kegel, J., Klute, M.J., Kuo, A., Lefebvre, S.C., Maumus, F., Mayer, C., Miller, J., Monier, A. [et al.], 2013. Pan Genome of the Phytoplankton Emiliania Underpins Its Global Distribution. Nature, 499, pp. 209-213. https://doi.org/10.1038/nature12221
  10. Kiørboe, T., Hansen, J.L.S., Alldredge, A.L., Jackson, G.A., Passow, U., Dam, H.G., Drapeau, D.T., Waite, A. and Garcia, C.M., 1996. Sedimentation of Phytoplankton during a Diatom Bloom: Rates and Mechanisms. Journal of Marine Research, 54(6), pp. 1123-1148. https://doi.org/10.1357/0022240963213754
  11. Smayda, T.J., 1997. What is a Bloom? A Commentary. Limnology and Oceanography, 42(5), pp. 1132-1136. https://doi.org/10.4319/lo.1997.42.5_part_2.1132
  12. Lassus, P., 2016. Toxic and Harmful Microalgae of the World Ocean. Nantes: International Society for the Study of Harmful Algae/Intergovernmental Oceanographic Commission of UNESCO, 523 p. (IOC Manuals and Guides; vol. 68).
  13. Makareviciute-Fichtner, K., Matthiessen, B., Lotze, H.K. and Sommer, U., 2024. Nutrient Enrichment Alters Phytoplankton Biomass and Composition via Silicon Limitation. Frontiers in Marine Science, 11, 1289768. https://doi.org/10.3389/fmars.2024.1289768
  14. Richardson, K., 1997. Harmful or Exceptional Phytoplankton Blooms in the Marine Ecosystem. Advances in Marine Biology, 31, pp. 301-385. https://doi.org/10.1016/S0065-2881(08)60225-4
  15. Kahru, M. and Nommann, S., 1990. The Phytoplankton Spring Bloom in the Baltic Sea in 1985, 1986: Multitude of Spatiotemporal Scales. Continental Shelf Research, 10(4), pp. 329-354. https://doi.org/10.1016/0278-4343(90)90055-Q
  16. Carstensen, J., Henriksen, P. and Heiskanen, A.-S., 2007. Summer Algal Blooms in Shallow Estuaries: Definition, Mechanisms, and Link to Eutrophication. Limnology and Oceanography, 52(1), pp. 370-384. https://doi.org/10.4319/lo.2007.52.1.0370
  17. Paerl, H.W., 1988. Nuisance Phytoplankton Blooms in Coastal, Estuarine and Inland Waters. Limnology and Oceanography, 33(4), part 2, pp. 823-843. https://doi.org/10.4319/lo.1988.33.4part2.0823
  18. Margalef, R., 1978. Life-Forms of Phytoplankton as Survival Alternatives in an Unstable Environment. Oceanologica Acta, 1(4), pp. 493-509.
  19. Isles, P.D. and Pomati, F., 2021. An Operational Framework for Defining and Forecasting Phytoplankton Blooms. Frontiers in Ecology and the Environment, 19(8), pp. 443-450. https://doi.org./10.1002/fee.2376
  20. Berseneva, G., Churilova, T. and Georgieva, L., 2004. Seasonal Variability in Pigment Concentration, Taxonomic Structure of Phytoplankton Community in Western Part of the Black Sea. Oceanology, 44(3), pp. 362-371. https://doi.org/10.1594/PANGAEA.762833
  21. Pautova, L.A., Mikaelyan, A.S. and Silkin, V.A., 2007. Structure of Plankton Phytocoenoses in the Shelf Waters of the Northeastern Black Sea during the Emiliania Huxleyi Bloom in 2002-2005. Oceanology, 47(3), pp. 408-417. https://doi.org/10.1134/S0001437007030101
  22. Moncheva, S., Gotsis-Skretas, O., Pagou, K. And Krastev, A., 2001. Phytoplankton Blooms in Black Sea and Mediterranean Coastal Ecosystems Subjected to Anthropogenic Eutrophication: Similarities and Differences. Estuarine Coastal and Shelf Science, 53(3), pp. 281-295. https://doi.org/10.1006/ecss.2001.0767
  23. Stramski, D. and Kiefer, D.A., 1991. Light Scattering by Microorganisms in the Open Ocean. Progress in Oceanography, 28(4), pp. 343-383. https://doi.org/10.1016/0079-6611(91)90032-h
  24. Cokacar, T., Oguz, T. and Kubilay, N., 2004. Satellite-Detected Early Summer Coccolithophore Blooms and Their Interannual Variability in the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 51(8), pp. 1017-1031. https://doi.org/10.1016/j.dsr.2004.03.007
  25. Kopelevich, O., Burenkov, V., Sheberstov, S., Vazyulya, S., Kravchishina, M., Pautova, L., Silkin, V., Artemiev, V. and Grigoriev, A., 2014. Satellite Monitoring of Coccolithophore Blooms in the Black Sea from Ocean Color Data. Remote Sensing of Environment, 146, pp. 113-123. https://doi.org/10.1016/j.rse.2013.09.009
  26. Kubryakov, A.A., Mikaelyan, A.S. and Stanichny, S.V., 2019. Summer and Winter Coccolithophore Blooms in the Black Sea and Their Impact on Production of Dissolved Organic Matter from Bio-Argo Data. Journal of Marine Systems, 199, 103220. https://doi.org/10.1016/j.jmarsys.2019.103220
  27. Vazyulya, S., Deryagin, D., Glukhovets, D., Silkin, V. and Pautova, L., 2023. Regional Algorithm for Estimating High Coccolithophore Concentration in the Northeastern Part of the Black Sea. Remote Sensing, 15(9), 2219. https://doi.org/10.3390/rs15092219
  28. Cazzaniga, I., Zibordi, G. and Mélin, F., 2021. Spectral Variations of the Remote Sensing Reflectance during Coccolithophore Blooms in the Western Black Sea. Remote Sensing of Environment, 264, 112607. https://doi.org/10.1016/j.rse.2021.112607
  29. Suslin, V., Pryahina, S., Churilova, T. and Slabakova, V., 2016. The Black Sea IOPs Based on SeaWiFS Data. In: G.G. Matvienko and O.A. Romanovskii, eds., 2016. Proceedings of SPIE – the International Society for Optical Engineering. XXII International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. Tomsk: SPIE. Vol. 10035, 1003531. https://doi.org/10.1117/12.2248332
  30. Suslin, V. and Churilova, T., 2016. A Regional Algorithm for Separating Light Absorption by Chlorophyll-a and Coloured Detrital Matter in the Black Sea, Using 480–560 nm Bands from Ocean Colour Scanners. International Journal of Remote Sensing, 37(18), pp. 4380-4400. https://doi.org/10.1080/01431161.216.1211350
  31. Churilova, T.Ya. and Suslin, V.V., 2012. On Causes of Emiliania Huxleyi Domination in Phytoplankton of Deep Waters Part of the Black Sea in Early Summer. In: MHI, 2012. Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources. Sevastopol: ECOSI-Gidrofizika. Iss. 26, vol. 2, pp. 195-203 (in Russian).
  32. Dorofeev, V.L., 2009. Modeling of Decadal Variations in the Black-Sea Ecosystem. Physical Oceanography, 19(6), pp. 400-409. https://doi.org/10.1007/s11110-010-9062-6
  33. Ivanov, V.A. and Belokopytov, V.N., 2013. Oceanography of the Black Sea. Sevastopol: MHI, 210 p.
  34. Suslin, V.V. and Churilova, T.Ya., 2010. Simplified Method of Calculation of Spectral Diffuse Beam Attenuation Coefficient in the Black Sea Upper Layer on the Basis of Satellite Data. In: MHI, 2010. Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources. Sevastopol: ECOSI-Gidrofizika. Iss. 22, pp. 47-60 (in Russian).
  35. Behrenfeld, M.J., 2010. Abandoning Sverdrup's Critical Depth Hypothesis on Phytoplankton Blooms. Ecology, 91(4), pp. 977-989. https://doi.org/10.1890/09-1207.1
  36. González-Gil, R., Banas, N.S., Bresnan, E. and Heath, M.R., 2022. The Onset of the Spring Phytoplankton Bloom in the Coastal North Sea Supports the Disturbance Recovery Hypothesis. Biogeosciences, 19(9), pp. 2417-2426. https://doi.org/10.5194/bg-19-2417-2022
  37. MacIntyre, H.L., Kana, T.M., Anning, T. and Geider, R.J., 2002. Photoacclimation of Photosynthesis Irradiance Response Curves and Photosynthetic Pigments in Microalgae and Cyanobacteria. Journal of Phycology, 38(1), pp. 17-38. https://doi.org/10.1046/j.1529-8817.2002.00094.x
  38. Falkowski, P.G., Woodhead, A.D. and Vivirito, K., eds., 1992. Primary Productivity and Biogeochemical Cycles in the Sea. New York: Springer, 550 p. https://doi.org/10.1007/978-1-4899-0762-2
  39. Falkowski, P.G. and Raven, J.A., 2007. Aquatic Photosynthesis. New Jersey: Princeton University Press, 488 p. https://doi.org/10.1515/9781400849727
  40. Richardson, K., Beardall, J. and Raven, J.A., 1983. Adaptation of Unicellular Algae to Irradiance: An Analysis of Strategies. New Phytologist, 93, pp. 157-191. https://doi.org/10.1111/J.1469-8137.1983.TB03422.X
  41. Van Bleijswijk, J.D.L., Kempers, R.S., Veldhuis, M.J. and Westbroek, P., 1994. Cell and Growth Characteristics of Types A and B of Emiliania Huxleyi (Prymnesiophyceae) as Determined by Flow Cytometry and Chemical Analyses. Journal of Phycology, 30(2), pp. 230-241. https://doi.org/10.1111/j.0022-3646.1994.00230.x
  42. Nielsen, M.V., 1997. Growth, Dark Respiration and Photosynthetic Parameters of the Coccolithophorid Emiliania Huxleyi (Prymnesiophyceae) Acclimated to Different Day Length-Irradiance Combinations. Journal of Phycology, 33(5), pp. 818-822. https://doi.org/10.1111/j.0022-3646.1997.00818.x
  43. McKew, B.A., Davey, P., Finch, S.J., Hopkins, J., Lefebvre, S.C., Metodiev, M.V., Oxborough, K., Raines, C.A., Lawson, T. [et al.], 2013. The Trade‐off between the Light‐Harvesting and Photoprotective Functions of Fucoxanthin‐Chlorophyll Proteins Dominates Light Acclimation in Emiliania Huxleyi (Clone CCMP 1516). New Phytologist, 200(1), pp. 74-85. https://doi.org/10.1111/nph.12373
  44. Paasche, E., 2002. A Review of the Coccolithophorid Emilinia Huxleyi (Prymnesiophyceae) with Particular Reference to Growth, Coccolith Formation, and Calcification–Photosynthesis Interactions. Phycologia, 40(6), pp. 503-529. https://doi.org/10.2216/i0031-8884-40-6-503.1
  45. Gafar, N.A. and Schulz, K.G., 2018. A Three-Dimensional Niche Comparison of Emiliania Huxleyi and Gephyrocapsa Oceanica: Reconciling Observations with Projections. Biogeosciences, 15(11), pp. 3541-3560. https://doi.org/10.5194/bg-15-3541-2018
  46. Raven, J.A., 2011. The Cost of Photoinhibition. Physiologia Plantarum, 142(1), pp. 87-104. https://doi org/10.1111/j.1399-3054.2011.01465.x
  47. Neumann, G. and Pierson, W.J., 1966. Principles of Physical Oceanography. Englewood Cliffs: Prentice-Hall, pp. 230-233.
  48. Suslin, V.V., Korolev, S.N., Kucheryaviy, A.A., Churilova, T.Ya. and Krivenko, O.V., 2015. Photosynthetically Available Radiation on Surface of the Black Sea Based on Ocean Color Data. In: O.A. Romanovskii, ed., 2015. Proceedings of SPIE. 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics. Tomsk: SPIE. Vol. 9680, 96800T. https://doi.org/10.1117/12.2203660
  49. Churilova, T.Ya., Skorokhod, E.Yu., Efimova, T.V. and Moiseeva, N.A., 2025. Chlorophyll “a” Concentration and Light Absorption by Coloured Dissolved Organic Matter in the Black Sea in Winter (2018) and Summer (2020). Fundamentalnaya i Pricladnaya Gidrophisika, (1) (being printed) (in Russian).
  50. Napp, J.M. and Hunt, G.L.J., 2001. Anomalous Conditions in the South-Eastern Bering Sea 1997: Linkages among Climate, Weather, Ocean and Biology. Fish Oceanography, 10(1), pp. 61-68. https://doi.org/10.1046/j.1365-2419.2001.00155.x
  51. Mohan, R., Mergulhao, L.P., Guptha, M.V.S., Rajakumar, A., Thaban, M., AnilKumar, N., Sudhakar, M. and Ravindra, R., 2008. Ecology of Coccolithophores in the Indian Sector of the Southern Ocean. Marine Micropaleontology, 67(1-2), pp. 30-45. https://doi.org/10.1016/j.marmicro.2007.08.005
  52. Beaufort, L., Couapel, M., Buchet, N., Claustre, H. And Goyet, G., 2008. Calcite Production by Coccolithophores in the South East Pacific Ocean. Biogeosciences, 5(4), pp. 1101-1117. https://doi.org/10.5194/bg-5-1101-2008
  53. O’Brien, C.J., Vogt, M. and Gruber, N., 2016. Global Coccolithophore Diversity: Drivers and Future Change. Progress in Oceanography, 140, pp. 27-42. https://doi.org/10.1016/j.pocean.2015.10.003
  54. Oguz, T. and Merico, A., 2006. Factors Controlling the Summer Emiliania Huxleyi Bloom in the Black Sea: A Modeling Study. Journal of Marine Systems, 59(3-4), pp. 173-188. https://doi.org/10.1016/j.jmarsys.2005.08.002
  55. Nanninga, H. and Tyrrell, T., 1996. Importance of Light for the Formation of Algal Blooms by Emiliania Huxleyi. Marine Ecology Progress Series, 136, pp. 195-203. https://doi.org/10.3354/meps136195
  56. Karabashev, G.S., Sheberstov, S.V. and Yakubenko, V.G., 2006. The June Maximum of Normalized Radiance and Its Relation to the Hydrological Conditions and Coccolithophorid Bloom in the Black Sea. Oceanology, 46(3), pp. 305-317. https://doi.org/10.1134/S0001437006030027
  57. Mikaelyan, A.S., Pautova, L.A., Pogosyan, S.I. and Sukhanova, I.N., 2005. Summer Blooming of Coccolithophorids in the Northeastern Black Sea. Oceanology, 45, suppl. 1, pp. S127-S138.
  58. Geider, R.J., Macintyre, H.L. and Kana, T., 1997. Dynamic Model of Phytoplankton Growth and Acclimation: Responses of the Balanced Growth Rate and the Chlorophyll a:Carbon Ratio to Light, Nutrient-Limitation and Temperature. Marine Ecology Progress Series, 148(1-3), pp. 187-200. https://doi.org/10.3354/meps148187
  59. Moore, C.M., Mills, M.M., Milne, A., Langlois, R., Achterberg, E.P., Lochte, K., Geider, R.J. and La Roche, J., 2006. Iron Limits Primary Productivity during Spring Bloom Development in the Central North Atlantic. Global Change Biology, 12(4), pp. 626-634. https://doi.org/10.1111/j.1365-2486.2006.01122.x
  60. Cullen, J.J., Yang, X. and MacIntyre, H.L., 1992. Nutrient Limitation of Marine Photosynthesis. In: P.G. Falkowski and A.V. Woodhead, eds., 1992. Primary Productivity and Biogeochemical Cycles in the Sea. New York: Plenum Press, pp. 69-88. https://doi.org /10.1007/978-1-4899-0762-2_5
  61. Reigman, R., Noordeloos, A.A.M. and Cadee, G.C., 1992. Phaeocystis Blooms and Eutrophication of the Continental Coastal Zones of the North Sea. Marine Biology, 112(3), pp. 479-484. https://doi.org/10.1007/BF00356293
  62. Egge, J.K. and Heimdal, B.R., 1994. Blooms of Phytoplankton Including Emiliania Huxleyi (Haptophyta). Effects of Nutrient Supply in Different N:P Ratios. Sarsia, 79(4), pp. 333-348. https://doi.org/10.1080/00364827.1994.10413565
  63. Tyrrell, T. and Taylor, A.H., 1996. A Modelling Study of Emiliania Huxleyi in the NE Atlantic. Journal of Marine Systems, 9(1-2), pp. 83-112. https://doi.org/10.1016/0924-7963(96)00019-x
  64. Krivenko, O.V., 2008. Contents and Uptake of Inorganic Nitrogen in the Black Sea. Marine Ecological Journal, 7(4), pp. 13-26 (in Russian).
  65. Krivenko, O.V., 2006. Basic Regularities of the Formation of “New” and Regeneration Production in the Black Sea. Physical Oceanography, 16, pp. 337-349. https://doi.org/10.1007/s11110-006-0037-6
  66. Krivenko, O.V. and Parkhomenko, A.V., 2015. Upward and Regeneration Fluxes of Inorganic Nitrogen and Phosphorus of the Deep-Water Areas of the Black Sea. Biology Bulletin Reviews, 5(3), pp. 268-281.
  67. Poulton, A.J., Holligan, P.M., Charalampopoulou, A. and Adey, T.R., 2017. Coccolithophore Ecology in the Tropical and Subtropical Atlantic Ocean: New Perspectives from the Atlantic Meridional Transect (AMT) Programme. Progress in Oceanography, 158, pp. 150-170. https://doi.org/10.1016/j.pocean.2017.01.003
  68. Godrijan, J., Drapeau, D.T. and Balch, W.M., 2022. Osmotrophy of Dissolved Organic Carbon by Coccolithophores in Darkness. New Phytologist, 233(2), pp. 781-794. https://doi.org/10.1111/nph.17819
  69. Mayers, K.M.J., Poulton, A.J., Bidle, K., Thamatrakoln, K., Schieler, B., Giering, S.L.C., Wells, S.R., Tarran, G.A., Mayor, D. [et al.], 2020. The Possession of Coccoliths Fails to Deter Microzooplankton Grazers. Frontiers in Marine Science, 7, 569896. https://doi.org/10.3389/fmars.2020.569896
  70. Amelina, A.B., Sergeeva, V.M., Arashkevich, E.G., Drits, A.V., Solovyev, K.A. and Louppova, N.E., 2017. Feeding of the Dominant Herbivorous Plankton Species in the Black Sea and Their Role in Coccolithophorid Consumption. Oceanology, 57(6), pp. 806-816. https://doi.org/10.1134/S000143701706011X
  71. Grese, V.N. and Fedorina, A.I., 1979. Abundance and Biomass of the Zooplankton. In: V.N. Grese, ed., 1979. Fundamentals of Biological Productivity of the Black Sea. Kiev: Naukova Dumka, pp. 143-168 (in Russian).
  72. Gubanova, A.D., Polikarpov, I.G., Saburova, M.A. and Prusova, I., 2002. Long-Term Dynamics of Mesozooplankton by the Example of the Copepoda Community in Sevastopol Bay. Oceanology, 42(4), pp. 512-520.
  73. Rost, B. and Riebesell, U., 2004. Coccolithophores and the Biological Pump: Responses to Environmental Changes. In: H.R. Thierstein and J.R. Young, eds., 2004. Coccolithophores: From Molecular Processes to Global Impact. Heidelberg; Berlin: Springer, pp. 99-125. https://doi.org/10.1007/978-3-662-06278-4_5
  74. Müller, M.N., 2019. On the Genesis and Function of Coccolithophore Calcification. Frontiers in Marine Science, 6, 49. https://doi.org/10.3389/fmars.2019.00049
  75. Haunost, M., Riebesell, U., D’Amore, F., Kelting, O. and Bach, L.T., 2021. Influence of the Calcium Carbonate Shell of Coccolithophores on Ingestion and Growth of a Dinoflagellate Predator. Frontiers in Marine Science, 8, 664269. https://doi.org/10.3389/fmars.2021.664269
  76. Monteiro, F.M., Bach, L.T., Brownlee, C., Bown, P., Rickaby, R.E.M., Poulton, A.J., Tyrrell, T., Beaufort, L., Dutkiewicz, S. [et al.], 2016. Why Marine Phytoplankton Calcify. Science Advances, 2(7), e1501822. https://doi.org/10.1126/sciadv.1501822
  77. Nelson, N.B. and Siegel, D.A., 2013. The Global Distribution and Dynamics of Chromophoric Dissolved Organic Matter. Annual Review of Marine Science, 5(1), pp. 447-476. https://doi.org/10.1146/annurev-marine-120710-100751
  78. Oguz, T., ed., 2008. State of the Environment of the Black Sea (2001–2006/7). Istanbul: Commission on the Protection of the Black Sea Against Pollution, 488 p.
  79. Tozzi, S., Schofield, O. and Falkowski, P., 2004. Historical Climate Change and Ocean Turbulence as Selective Agents for Two Key Phytoplankton Functional Groups. Marine Ecology Progress Series, 274, pp. 123-132. https://doi.org/10.3354/meps274123
  80. Estrada, M., Alcaraz, M. and Marrase, C., 1987. Effects of Turbulence on the Composition of Phytoplankton Assemblages in Marine Microcosms. Marine Ecology Progress Series, 38(3), pp. 267-281. https://doi.org/10.3354/meps038267
  81. Falkowski, P., Schofield, O., Katz, M.E., de Schootbrugge, B.V. and Knoll, A.H., 2004. Why is the Land Green and the Ocean Red? In: H.R. Thierstein and J.R. Young, eds., 2004. Coccolithophores: From Molecular Processes to Global Impact. Heidelberg; Berlin: Springer, pp. 429-453. https://doi.org/10.1007/978-3-662-06278-4_16
  82. Hagino, K., Bendif, E.M., Young, J.R., Kogame, K., Probert, I., Takano, Y., Horiguchi, T., de Vargas, C. and Okada, H., 2011. New Evidence for Morphological and Genetic Variation in the Cosmopolitan Coccolithophore Emiliania Huxleyi (Prymnesiophyceae) from the Cox1b-Atp4 Genes. Journal of Phycology, 47(5), pp. 1164-1176. https://doi.org/10.1111/j.1529-8817.2011.01053.x
  83. Bendif, E.M., Probert, I., Archontikis, O.A., Young, J.R., Beaufort, L., Rickaby, R.E. and Filatov, D., 2023. Rapid Diversification Underlying the Global Dominance of a Cosmopolitan Phytoplankton. ISME Journal, 17(4), pp. 630-640. https://doi.org/10.1038/s41396-023-01365-5
  84. Wheeler, G.L., Sturm, D. and Langer, G., 2023. Gephyrocapsa Huxleyi (Emiliania Huxleyi) as a Model System for Coccolithophore Biology. Journal of Phycology, 59(6), pp. 1123-1129. https://doi.org/10.1111/jpy.13404

Download the article (PDF)