Resonance Generation of Short Internal Waves by the Barotropic Seiches in an Ice-Covered Shallow Lake

S. Yu. Volkov, S. R. Bogdanov, R. E. Zdorovennov, N. I. Palshin, G. E. Zdorovennova, T. V. Efremova, G. G. Gavrilenko, A. Yu. Terzhevik

Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russian Federation

e-mail: zdorovennova@gmail.com

Abstract

Purpose. The observation measurements testify the fact that heat and mass transfer processes in the shallow ice-covered lakes are not limited to the molecular diffusion only. In particular, the effective thermal diffusivity exceeds the molecular one by up to a few orders of magnitude. Now it is widely accepted that the transfer processes, in spite of their low intensity, are controlled by intermittent turbulence. At the same time, its nature and generation mechanism are still studied insufficiently. The paper represents one of such mechanisms associated with resonance generation of short internal waves by the barotropic seiches.

Methods and Results. The temperature measurements in a shallow lake in winter were used as an experimental base. Having been analyzed, the temperature profiles’ dynamics observed during a few weeks after freezing revealed the anomalous values of thermal diffusivity. At that the temperature pulsations’ spectra clearly demonstrate the peak close to the main mode of barotropic seiches. Counter-phase oscillations at the different depths and pronounced heterogeneity of the amplitudes of temperature pulsations over depth indicate presence of internal waves. Based on these data, the mechanism of energy transfer from the barotropic seiches to the internal waves similar to the “tidal conversion” (the latter governs resonance generation of internal tides in the ocean), is proposed. The expressions for heat flux, energy dissipation rate and effective thermal diffusivity are derived.

Conclusions. Internal waves can play an essential role in the processes of interior mixing and heat transfer in the ice-covered lakes. Though direct wind-induced turbulence production is inhibited, baric perturbations in the atmosphere can give rise to barotropic seiches, which play the role of an intermediate energy reservoir and can generate short resonant internal waves resulted from interaction with the undulate lake floor. The internal wave field parameters strongly depend on the barotropic seiche amplitudes, buoyancy frequency and the bottom topography features.

Keywords

seiche conversion, ice-covered lake, temperature vertical profiles, internal waves, barotropic seiches, energy dissipation rate

Acknowledgements

The study was carried out within the framework of the state task of the NWPI, KarRC RAS (project No. 0218-2019-0049).

Original russian text

Original Russian Text © The Authors, 2020, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 36, Iss. 4, pp. 407–423 (2020)

For citation

Volkov, S.Yu., Bogdanov, S.R., Zdorovennov, R.E., Palshin, N.I., Zdorovennova, G.E., Efremova, T.V., Gavrilenko, G.G. and Terzhevik, A.Yu., 2020. Resonance Generation of Short Internal Waves by the Barotropic Seiches in an Ice-Covered Shallow Lake. Physical Oceanography, 27(4), pp. 374-389. doi:10.22449/1573-160X-2020-4-374-389

DOI

10.22449/1573-160X-2020-4-374-389

References

  1. Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J., Engelhardt, C., Efremova, T., Golosov, S., Palshin, N., Sherstyankin, P., Zdorovennova, G. and Zdorovennov, R., 2012. Physics of Seasonally Ice-Covered Lakes: a Review. Aquatic Sciences, 74(10), pp. 659-682. https://doi.org/10.1007/s00027-012-0279-y
  2. Petrov, M.P., Terzhevik, A.Yu., Zdorovennov, R.E. and Zdorovennova, G.E., 2006. The Thermal Structure of a Shallow Lake in Early Winter. Water Resources, 33(20), pp. 135-143. https://doi.org/10.1134/S0097807806020035
  3. Ellis, C.R., Stefan, H.G. and Gu, R., 1991. Water Temperature Dynamics and Heat Transfer beneath the Ice Cover of a Lake. Limnology and Oceanography, 36(2), pp. 324-334. doi:10.4319/lo.1991.36.2.0324
  4. Malm, J., 1998. Bottom Buoyancy Layer in an Ice-Covered Lakes. Water Resources Research, 34(11), pp. 2981-2993. doi:10.1029/98WR01904
  5. Bengtsson, L., 1996. Mixing in Ice Covered Lakes. Hydrobiologia, 322(1–3), pp. 91-97. https://doi.org/10.1007/BF00031811
  6. Zyryanov, V.N., 2011. Under-Ice Seiches. Water Resources, 38(3), pp. 261-273. https://doi.org/10.1134/S0097807811020163
  7. Malm, J., Bengtsson, L., Terzhevik, A., Boyarinov, P., Glinsky, A., Palshin, N. and Petrov, M., 1998. Field Study on Currents in a Shallow, Ice-Covered Lake. Limnology and Oceanography, 43(7), pp. 1669-1679. doi:10.4319/lo.1998.43.7.1669
  8. Petrov, M.P., Terzhevik, A.Yu., Zdorovennov, R.E. and Zdorovennova, G.E., 2007. Motion of Water in an Ice-Covered Shallow Lake. Water Resources, 34(2), pp. 113-122. https://doi.org/10.1134/S0097807807020017
  9. Sturova, I.V., 2007. Effect of Ice Cover on Oscillations of Fluid in a Closed Basin. Izvestiya, Atmospheric and Oceanic Physics, 43(1), pp. 112-118. https://doi.org/10.1134/S0001433807010136
  10. Garrett, C. and Munk, W., 1972. Oceanic Mixing by Breaking Internal Waves. Deep-Sea Research and Oceanographic Abstracts, 19(12), pp. 823–832. https://doi.org/10.1016/0011-7471(72)90001-0
  11. Bell, T.H., 1975. Lee Waves in Stratified Flows with Simple Harmonic Time Dependence. Journal of Fluid Mechanics, 67(4), pp. 705-722. https://doi.org/10.1017/S0022112075000560
  12. Llewellyn Smith, S.G. and Young, W.R., 2002. Conversion of the Barotropic Tide. Journal of Physical Oceanography, 32(5), pp. 1554-1566. https://doi.org/10.1175/1520-0485(2002)032%3C1554:COTBT%3E2.0.CO;2
  13. Zdorovennov, R., Palshin, N., Zdorovennova, G., Efremova T. and Terzhevik, A., 2013. Interannual Variability of Ice and Snow Cover of a Small Shallow Lake. Estonian Journal of Earth Sciences, 62(1), pp. 26-32. doi:10.3176/earth.2013.03
  14. Bengtsson, L., Malm, J., Terzhevik, A., Petrov, M., Bojarinov, P. Glinsky, A. and Palshin, N., 1996. Field Investigation of Winter Thermo- and Hydrodinamics in a Small Karelian Lake. Limnology and Oceanography, 41(7), pp. 1502-1513. doi:10.4319/lo.1996.41.7.1502
  15. Palshin, N.I., Bogdanov, S.R., Zdorovennova, G.E., Zdorovennov, R.E., Efremova, T.V., Belashev, B.Z. and Terzhevik, A.Yu., 2018. Short Internal Waves in a Small Ice-Covered Lake. Water Resources, 45(5), pp. 695-705. doi:10.1134/S0097807818050159
  16. Garrett, C. and Kunze, E., 2007. Internal Tide Generation in the Deep Ocean. Annual Review of Fluid Mechanics, 39, pp. 57-87. https://doi.org/10.1146/annurev.fluid.39.050905.110227
  17. Bühler, O. and Muller, C.J., 2007. Instability and Focusing of Internal Tides in the Deep Ocean. Journal of Fluid Mechanics, 588, pp. 1-28. https://doi.org/10.1017/S0022112007007410
  18. Balmforth, N.J., Ierley, G.R. and Young, W.R., 2002. Tidal Conversion by Subcritical Topography. Journal of Physical Oceanography, 32(10), pp. 2900-2914. https://doi.org/10.1175/1520-0485(2002)032%3C2900:TCBST%3E2.0.CO;2
  19. Bell, T.H., 1975. Topographically Generated Internal Waves in the Open Ocean. Journal of Geophysical Research__, 80(3), pp. 320-327. doi:10.1029/JC080i003p00320
  20. St. Laurent, L. and Garrett, C., 2002. The Role of Internal Tides in Mixing the Deep Ocean. Journal of Physical Oceanography, 32(10), pp. 2882-2899. https://doi.org/10.1175/1520-0485(2002)032%3C2882:TROITI%3E2.0.CO;2
  21. Jayne, S.R., St. Laurent, L.C. and Gille, S.T., 2004. Connections between Ocean Bottom Topography and Earth’s Climate. Oceanography, 17(1), pp. 65-74. http://dx.doi.org/10.5670/oceanog.2004.68
  22. Håkanson, L., 1981. On Lake Bottom Dynamics – the Energy-Topography Factor. Canadian Journal of Earth Sciences, 18(5), pp. 899-909. https://doi.org/10.1139/e81-086
  23. Wilson, B., 1972. Seiches. In: Ven Te Chow, ed., 1972. Advances in Hydrosciences. Amsterdam: Elsevier. Vol. 8, pp. 1-94. https://doi.org/10.1016/B978-0-12-021808-0.50006-1
  24. MacIntyre, S., Flynn, K.M., Jellison, R. and Romero, J.R., 1999. Boundary Mixing and Nutrient Fluxes in Mono Lake, California. Limnology and Oceanography, 44(3), pp. 512-529. doi:10.4319/lo.1999.44.3.0512
  25. MacIntyre, S., Clark, J.F., Jellison, R. and Fram, J.P., 2009.Turbulent Mixing Induced by Nonlinear Internal Waves in Mono Lake, California. Limnology and Oceanography, 54(6), pp. 2255-2272. doi:10.4319/lo.2009.54.6.2255
  26. Wain, D.J., Kohn, M.S., Scanlon, J.A. and Rehmann, C.R., 2013. Internal Wave-Driven Transport of Fluid Away from the Boundary of a Lake. Limnology and Oceanography, 58(2), pp. 429-442. doi:10.4319/lo.2013.58.2.0429
  27. Sheen, K.L., Brearley, J.A., Naveira Garabato, A.C., Smeed, D.A., Waterman, S., Ledwell, J.R., Meredith, M.P., Laurent, L.St., Thurnherr, A.M., Toole, J.M. and Watson, A.J., 2013. Rates and Mechanisms of Turbulent Dissipation and Mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). Journal of Geophysical Research: Oceans, 118(6), pp. 2774–2792. doi:10.1002/jgrc.20217
  28. MacIntyre, S., 1993. Vertical Mixing in a Shallow, Eutrophic Lake: Possible Consequences for the Light Climate of Phytoplankton. Limnology and Oceanography, 38(4), pp. 798-817. doi:10.4319/lo.1993.38.4.0798
  29. Wüest, A., Piepke, G. and Van Senden, D.C., 2000. Turbulent Kinetic Energy Balance as a Tool for Estimating Vertical Diffusivity in Wind-Forced Stratified Waters. Limnology and Oceanography, 45(6), pp. 1388-1400. doi:10.4319/lo.2000.45.6.1388
  30. Wüest, A. and Lorke, A., 2003. Small-Scale Hydrodynamics in Lakes. Annual Review of Fluid Mechanics, 35, pp. 373-412. https://doi.org/10.1146/annurev.fluid.35.101101.161220
  31. Smyth, W.D. and Moum, J.N., 2000. Length Scales of Turbulence in Stably Stratified Mixing Layers. Physics of Fluids, 12(6), pp. 1327-1342. https://doi.org/10.1063/1.870385
  32. Dillon, T.M., 1982. Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales. Journal of Geophysical Research: Oceans, 87(C12), pp. 9601-9613. doi:10.1029/JC087iC12p09601
  33. Osborn, T.R., 1980. Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. Journal of Physical Oceanography, 10(1), pp. 83-89. https://doi.org/10.1175/1520-0485(1980)010%3C0083:EOTLRO%3E2.0.CO;2
  34. Mashayek, A., Salehipour, H., Bouffard, D., Caulfield, C.P., Ferrari, R., Nikurashin, M., Peltier, W.R. and Smyth, W.D., 2017. Efficiency of Turbulent Mixing in the Abyssal Ocean Circulation. Geophysical Research Letters, 44(12), pp. 6296-6306. doi:10.1002/2016GL072452
  35. Ulloa, H., Wüest, A. and Bouffard, D., 2018. Mechanical Energy Budget and Mixing Efficiency for a Radiatively Heated Ice-Covered Waterbody. Journal of Fluid Mechanics, 852, R1. doi:10.1017/jfm.2018.587
  36. Maffioli, A., Brethouwer, G. and Lindborg, E., 2016. Mixing Efficiency in Stratified Turbulence. Journal of Fluid Mechanics, 794, R3. doi:10.1017/jfm.2016.206
  37. Khatiwala, S., 2003. Generation of Internal Tides in an Ocean of Finite Depth: Analytical and Numerical Calculations. Deep Sea Research Part I: Oceanographic Research Papers, 50(1), pp. 3-21. https://doi.org/10.1016/S0967-0637(02)00132-2
  38. Wörman, A., Packman, A.I., Marklund, L., Harvey, J.W. and Stone, S.H., 2007. Fractal Topography and Subsurface Water Flows from Fluvial Bedforms to the Continental Shield. Geophysical Research Letters, 34(7), L07402. doi:10.1029/2007GL029426

Download the article (PDF)