Local Changes of Physical and Biological Parameters of the Sevastopol Bay Surface Waters under the Influence of Rain Drainage

A. V. Bagaev1, ✉, V. V. Nikishin1, T. V. Rauen2, L. V. Verzhevskaya1, S. V. Scherbachenko1

1 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

2 A. O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: a.bagaev1984@mhi-ras.ru

Abstract

Purpose. The work is aimed at assessing the temporal and spatial scales of variations in the physical and biological parameters of the seawater surface layer in the immediate vicinity of the urban rainwater drainage outlets in the Sevastopol Bay.

Methods and Results. The study area was limited to the Sevastopol Bay. Measurements were taken at the locations of the rainwater drainage outlets, namely in the Artilleriyskaya, Apollonova and Gollandiya bays. Temperature and salinity were measured by an unmanned surface vehicle (USV) using the TMA-21 sensor. The stations were located in a straight line normal to the coast from the rainwater drainage outlet. Quantitative and size composition of total suspended matter and bacterioplankton particles were determined using the Cytomics TM FC 500 flow cytometer. Water temperature was shown to vary within 1.5 °C and its horizontal gradient was weakly pronounced. In the salinity field, the gradient reached 0.5 m−1. The maximum concentrations of suspended matter were revealed in the apical part of the Artilleriyskaya Bay (about 0.5 × 106 particles mL−1). The particle sizes of suspended matter ranged from 0.5 to 2.5 μm. Bacterial concentrations in the storm water corresponded to the summer maximums observed in the Sevastopol Bay (0.9 × 106–2.8 × 106 ppm). The storm water inflow into the bay resulted in changes of the picophytoplankton number (by 2–6 times).

Conclusions. The method of applying an unmanned surface vehicle for operative local monitoring of seawater state in the areas of the rainwater drainage outlets has been tested. The data on the salinity changes can serve as an indicator of the discharge intensity and can be used for forecasting the impact of storm water runoffs during reconstruction/relocation of the sewer network. The concentrations of suspended solids and microorganisms in the bay surface waters are restored one day after a heavy rain. Therefore, rapid assessment of the impact of potentially dangerous or accidental discharges requires application of the unmanned surface vehicles for conducting the operational measurements.

Keywords

Sevastopol Bay, storm water runoff, unmanned surface vehicle, seston, bacterioplankton, temperature, salinity

Acknowledgements

Expeditionary research, data accumulation, and data quality assessment were supported by the RFBR and Sevastopol Government grant No. 20-45-920019. Additional data processing, its visualization, and analysis were performed within the framework of the state assignment of FRC MHI on theme No. 555-2021-0005. Processing of the flow cytometer data and analysis of the results were done with a support of the state assignment of FRC ISS No. 121030300149-0. The authors are grateful to V. S. Mukhanov and E. O. Sakhon for their assistance in cytometry process.

Original russian text

Original Russian Text © The Authors, 2022, + published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 38, Iss. 2, pp. 165-184 (2022)

For citation

Bagaev, A.V., Nikishin, V.V., Rauen, T.V., Verzhevskaya, L.V. and Scherbachenko, S.V., 2022. Local Changes of Physical and Biological Parameters of the Sevastopol Bay Surface Waters under the Influence of Rain Drainage. Physical Oceanography, 29(2), pp. 152-171. doi:10.22449/1573-160X-2022-2-152-171

DOI

10.22449/1573-160X-2022-2-152-171

References

  1. Kumar, P., 2021. Water Quality Assessments for Urban Water Environment. Water, 13(12), 1686. https://doi.org/10.3390/w13121686
  2. Costanzo, S.D., O’Donohue, M.J., Dennison, W.C., Loneragan, N.R. and Thomas, M., 2001. A New Approach for Detecting and Mapping Sewage Impacts. Marine Pollution Bulletin, 42(2), pp. 149-156. https://doi.org/10.1016/S0025-326X(00)00125-9
  3. Chunye, W. and Delu, P., 2017. Zoning of Hangzhou Bay Ecological Red Line Using GIS- Based Multi-Criteria Decision Analysis. Ocean & Coastal Management, 139, pp. 42-50. https://doi.org/10.1016/j.ocecoaman.2017.01.013
  4. Özdemir, N., Döndü, M. and Doğan, H.M., 2018. Investigation Some Physico-Chemical Properties of the Freshwater Sources Feeding the Bay of Gökova in Turkey by Geographic Information Systems. In: S. A. Maskevich and S. S. Poznyak, eds., 2018. Sakharov Readings 2018: Environmental Problems of the XXI Century. Minsk: IVTZ Minfina, pp. 12-14. Available at: https://elib.bsu.by/handle/123456789/204106 [Accessed: 01 March 2022].
  5. Konovalov, S., Vladymyrov, V., Dolotov, V., Sergeeva, A., Goryachkin, Yu., Vnukov, Yu., Moiseenko, O., Alyemov, S., Orekhova, N. and Zharova, L., 2011. Coastal Management Tools and Databases for the Sevastopol Bay (Crimea). In: E. Ozhan, ed., 2011. Proceedings of the Tenth International Conference on the Mediterranean Coastal Environment, MEDCOAST 11. Rhodes, Greece. Vol. 1, pp. 145-156. Available at: https://istina.msu.ru/media/publications/articles/310/75b/4422893/MedCoast_Rhodes.pdf [Accessed: 20 April 2022].
  6. Penna, P., Baldrighi, E., Betti, M., Bolognini, L., Campanelli, A., Capellacci, S., Casabianca, S., Ferrarin, C., Giuliani, G. [et al.], 2021. Water Quality Integrated System: A Strategic Approach to Improve Bathing Water Management. Journal of Environmental Management, 295, 113099. https://doi.org/10.1016/j.jenvman.2021.113099
  7. Reynolds, L.J., Martin, N.A., Sala-Comorera L., Callanan K., Doyle P., O’Leary C., Buggy P., Nolan T.M., O’Hare G.M.P. [et al.], 2021. Identifying Sources of Faecal Contamination in a Small Urban Stream Catchment: A Multiparametric Approach. Frontiers in Microbiology, 12, 661954. doi:10.3389/fmicb.2021.661954
  8. Graves, C.A., Powell, A., Stone, M., Redfern, F., Biko, T. and Devlin, M., 2021. Marine Water Quality of a Densely Populated Pacific Atoll (Tarawa, Kiribati): Cumulative Pressures and Resulting Impacts on Ecosystem and Human Health. Marine Pollution Bulletin, 163, 111951. https://doi.org/10.1016/j.marpolbul.2020.111951
  9. Meng, F. and Saagi, R., 2021. Integrated Modelling and Control of Urban Wastewater Systems. In: X. C. Wang and G. Fu, 2021. Water-Wise Cities and Sustainable Water Systems: Concepts, Technologies, and Applications. London: IWA Publishing. Chapter 10, pp. 259- 279. https://doi.org/10.2166/9781789060768_0259
  10. Yalçın, B., Artüz, M.L., Pavlidou, A., Çubuk, S. and Dassenakis, M., 2017. Nutrient Dynamics and Eutrophication in the Sea of Marmara: Data from Recent Oceanographic Research. Science of The Total Environment, 601–602, pp. 405-424. https://doi.org/10.1016/j.scitotenv.2017.05.179
  11. Tan, İ. and Aslan, E., 2020. Metal Pollution Status and Ecological Risk Assessment in Marine Sediments of the Inner Izmit Bay. Regional Studies in Marine Science, 33, 100850. https://doi.org/10.1016/j.rsma.2019.100850
  12. Moiseenko, O.G., Konovalov, S.K. and Orekhova, N.A., 2013. [Indices for Assessing the Ecological Status of Bays in the Overall Strategy for Managing the Coastal Environment for its Sustainable Development on the Example of the Sevastopol Bay (Black Sea)]. In: MHI, 2013. Ekologicheskaya Bezopasnost’ Pribrezhnykh i Shel’fovykh Zon i Kompleksnoe Ispol’zovanie Resursov Shel’fa [Ecological Safety of Coastal and Shelf Zones of Sea and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 27, pp. 399- 402 (in Russian).
  13. Tereshchenko, N.N., Proskurnin, V.Yu., Gulin, S.B. and Krylova, T.A., 2013. [Radioecological Monitoring of Plutonium in the Bottom Sediments of Sevastopol Bays]. In: MHI, 2013. Ekologicheskaya Bezopasnost’ Pribrezhnykh i Shel’fovykh Zon i Kompleksnoe Ispol’zovanie Resursov Shel’fa [Ecological Safety of Coastal and Shelf Zones of Sea and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 27, pp. 289- 293 (in Russian).
  14. Mironov, O.A., Muravyova, I.P. and Mironova, T.O., 2012. Oil Pollution of Sevastopol Coasts. In: MHI, 2012. Ekologicheskaya Bezopasnost’ Pribrezhnykh i Shel’fovykh Zon i Kompleksnoe Ispol’zovanie Resursov Shel’fa [Ecological Safety of Coastal and Shelf Zones of Sea and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 26, vol. 1, pp. 212-216 (in Russian).
  15. Ovsyany, E.I., Kemp, R.B., Repeetin, L.N. and Romanov, A.S., 2000. [Hydrological and Hydrochemical Regime of the Sevastopol Bay under Conditions of Anthropogenic Impact (According to Observations in 1998–1999)]. In: MHI, 2000. Ekologicheskaya Bezopasnost’ Pribrezhnykh i Shel’fovykh Zon i Kompleksnoe Ispol’zovanie Resursov Shel’fa [Ecological Safety of Coastal and Shelf Zones of Sea and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 1, pp. 79-103 (in Russian).
  16. Sovga, E.E., Mezentseva, I.V., Khmara, T.V. and Slepchuk, K.A., 2014. [On the Prospects and Possibilities for Assessing the Self-Cleaning Capacity of the Water Area of the Sevastopol Bay]. In: MHI, 2014. Ekologicheskaya Bezopasnost’ Pribrezhnykh i Shel’fovykh Zon i Kompleksnoe Ispol’zovanie Resursov Shel’fa [Ecological Safety of Coastal and Shelf Zones of Sea and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 28, pp. 153-164 (in Russian).
  17. Sovga, E.E. and Khmara, T.V., 2020. Influence of the Chernaya River Runoff during High and Low Water on the Ecological State of the Apex of the Sevastopol Bay Water Area. Physical Oceanography, 27(1), pp. 28-36. doi:10.22449/1573-160X-2020-1-28-36
  18. Gordina, A.D., Pavlova, E.V., Kemp, R.B., Wilson, J.G., Repetin, L.N., Ovsyany, E.J., Romanov, A.S., Min’kovskaya, R.Ya., Krasnovid, I.I. [et al.], 2001. The Most Important Sources of Pollution of the Marine Environment of the Coastal Zone of Sevastopol. In: MHI, 2001. Ekologicheskaya Bezopasnost’ Pribrezhnykh i Shel’fovykh Zon i Kompleksnoe Ispol’zovanie Resursov Shel’fa [Ecological Safety of Coastal and Shelf Zones of Sea and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 2, pp. 138-152 (in Russian).
  19. Simonov, A.I. and Ryabinin, A.I., eds., 1996. [Hydrometeorology and Hydrochemistry of Seas. Vol. 4. The Black Sea. Iss. 3. Modern State of the Black Sea Water Pollution]. Sevastopol: ECOSI-Gidrofizika, 230 p. (in Russian).
  20. Ivanov, V.A., Ovsyany, E.I., Repetin, L.N., Romanov, A.S. and Ignatyeva, O.G., 2006. Hydrological and Hydrochemical Regime of the Sevastopol Bay and Its Changing under Influence of Climatic and Anthropogenic Factors. Sevastopol: MHI NAS of Ukraine, 90 p. Available at: http://mhi-ras.ru/assets/files/gidrologo- gidrohimicheskij_rezhim_sevastopolskoj_buhty_2006.pdf [Accessed: 28 February 2022] (in Russian).
  21. Gruzinov, V.M., Dyakov, N.N., Mezenceva, I.V., Malchenko, Yu.A., Zhohova, N.V. and Korshenko, A.N., 2019. Sources of Coastal Water Pollution near Sevastopol. Oceanology, 59(4), pp. 523-532. https://doi.org/10.1134/S0001437019040076
  22. Pavlova, E.V., Ovsyany, E.I., Gordina, A.D., Romanov, A.S. and Kemp, R.B., 1999. [Modern State and Tendencies of Change in Sevastopol Bay Ecosystem]. In: E. V. Pavlova and N. V. Shadrin, eds., 1999. [Sevastopol Aquatory and Coast: Ecosystem Processes and Services for Human Society]. Sevastopol: Akvavita Publ., pp. 70-94 (in Russian).
  23. Mironov, O.G., Kirjukhina, L.N. and Alyomov, S.V., 2003. Sanitary-Biological Aspects of the Sevastopol Bays Ecology in XX Century. Sevastopol: ECOSI-Gidrofizika, 185 p. (in Russian).
  24. Lopukhin, A.S., Ovsyany, E.I., Romanov, A.S., Kovardakov, S.A., Bryanzeva, Yu., Rylkova, O.A., Gavrilova, N.A., Gubanov, V.V., Lopukhin, S.A. [et al.], 2007. Seasonal Peculiarities of Hydrologic-Hydrochemical Structure of Sevastopol Bay Water, Microplankton and Distribution of Its Biochemical Components (the Black Sea, Observations of 2004–2005). In: MHI, 2007. Ekologicheskaya Bezopasnost’ Pribrezhnykh i Shel’fovykh Zon i Kompleksnoe Ispol’zovanie Resursov Shel’fa [Ecological Safety of Coastal and Shelf Zones of Sea and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 15, pp. 74-109 (in Russian).
  25. Mukhanov, V.S., Litvinyuk, D.A., Sakhon, E.G., Bagaev, A.V., Veerasingam, S. and Venkatachalapathy, R., 2019. A New Method for Analyzing Microplastic Particle Size Distribution in Marine Environmental Samples. Ecologica Montenegrina, 23, pp. 77-86. https://doi.org/10.37828/em.2019.23.10
  26. Verzhevskaya, L.V. and Minkovskaya, R.Yа., 2020. Structure and Dynamics of Anthropogenic Load on the Coastal Zone of the Sevastopol Region. Ecological Safety of Coastal and Shelf Zones of Sea, (2), pp. 92-106. doi:10.22449/2413-5577-2020-2-92-106 (in Russian).
  27. Moiseenko, O.G., Orekhova, N.A., Polyakova, A.V., Medvedev, E.V. and Konovalov, S.K., 2015. Indices and Indicators of the Environmental State of the Sevastopol Bay. Vestnik Moskovskogo Universiteta. Seriya 5, Geografiya, (4), pp. 42-49. Available at: https://vestnik5.geogr.msu.ru/jour/article/view/155 [Accessed: 03 March 2022] (in Russian).
  28. Ryabtsev, Yu.N., Verzhevskaya, L.V., Rauen, T.V., Tsyganova, M.V., Nikishin, V.V. and Bagaev, A.V., 2021. Search for an Optimal Configuration of Projected Municipal Sewerage Outfalls in the Sevastopol Bay using Computational Modelling and Geoinformation Analysis. Ecological Safety of Coastal and Shelf Zones of Sea, (1), pp. 111-128. doi:10.22449/2413- 5577-2021-1-111-128 (in Russian).
  29. Moreira-Turcq, P., Martin, J. M. and Fleury, A., 1993. Chemical and Biological Characterization of Particles by Flow Cytometry in the Krka Estuary, Croatia. Marine Chemistry, 43(1-4), pp. 115-126. https://doi.org/10.1016/0304-4203(93)90219-E
  30. Moreira-Turcq, P.F. and Martin, J.M., 1998. Characterisation of Fine Particles by Flow Cytometry in Estuarine and Coastal Arctic Waters. Journal of Sea Research, 39(3–4), pp. 217-226. https://doi.org/10.1016/S1385-1101(97)00053-1
  31. Agagliate, J., Röttgers, R., Twardowski, M.S. and McKee, D., 2018. Evaluation of a Flow Cytometry Method to Determine Size and Real Refractive Index Distributions in Natural Marine Particle Populations. Applied Optics, 57(7), pp. 1705-1716. http://doi.org/10.1364/AO.57.001705
  32. Raimondi, F.M., Trapanese, M., Franzitta, V., Viola, A. and Colucci, A., 2015. A Innovative Semi-Immergible USV (SI-USV) Drone for Marine and Lakes Operations with Instrumental Telemetry and Acoustic Data Acquisition Capability. In: IEEE, 2015. OCEANS 2015 – Genova. IEEE, pp. 1-10. doi:10.1109/OCEANS-Genova.2015.7271595
  33. Geng, C., Li, G. and Xu, H., 2019. A Platform for Coastline Monitoring System by Unmanned Surface Vessel. In: IEEE, 2019. 3rd International Symposium on Autonomous Systems (ISAS). Shanghai, China: IEEE, pp. 177-180. doi:10.1109/ISASS.2019.8757775
  34. Blaich, M., Wirtensohn, S., Oswald, M., Hamburger, O. and Reuter, J., 2013. Design of a Twin Hull Based USV with Enhanced Maneuverability. IFAC Proceedings Volumes, 46(33), pp. 1-6. https://doi.org/10.3182/20130918-4-JP-3022.00056
  35. Vasilj, J., Stancic, I., Grujic, T. and Music, J., 2017. Design, Development and Testing of the Modular Unmanned Surface Vehicle Platform for Marine Waste Detection. Journal of Multimedia Information System, 4(4), pp. 195-204. https://doi.org/10.9717/JMIS.2017.4.4.195
  36. Yoder, N., Preston, V. and Michel, A., 2019. The PEST: Platform for Environmental Sensing Technology. In: IEEE, 2019. OCEANS 2019 - Marseille. Marseille, France: IEEE, pp. 1-5. https://doi.org/10.1109/OCEANSE.2019.8867366
  37. Pruidze, R.S. and Shishkin, E.M., 2020. Robotic Unmanned Water Laboratory for Monitoring Small Natural and Artificial Reservoirs. Meteorologiya i Gidrologiya, (11), pp. 122-124 (in Russian).
  38. Osadchiev, A., Barymova, A., Sedakov, R., Zhiba, R. and Dbar, R., 2020. Spatial Structure, Short-Temporal Variability, and Dynamical Features of Small River Plumes as Observed by Aerial Drones: Case Study of the Kodor and Bzyp River Plumes. Remote Sensing, 12(18), 3079. https://doi.org/10.3390/rs12183079
  39. Osadchiev, A. and Zavialov, P., 2019. Structure and Dynamics of Plumes Generated by Small Rivers. In: J. Pan and A. Devlin, 2019. Estuaries and Coastal Zones – Dynamics and Response to Environmental Changes. London: IntechOpen. https://doi.org/10.5772/intechopen.87843
  40. Nikishin, V., Durmanov, M. and Skorik, I., 2020. Autonomous Unmanned Surface Vehicle for Water Surface Monitoring. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 14(4), pp. 853-858. doi:10.12716/1001.14.04.09
  41. Nikishin, V., Durmanov, M. and Skorik, I., 2021. Low-Cost Unmanned Surface Vehicle for Autonomous Bathymetric Surveillance. In: S. Bauk and S. D. Ilčev, 2021. The 1st International Conference on Maritime Education and Development. Cham: Springer, pp. 83- 91. https://doi.org/10.1007/978-3-030-64088-0_8
  42. Nikishin, V.V. and Durmanov, M.A., 2019. [The Structure of Low- and High-Level Software for an Unmanned Marine Vehicle]. In: A. A. Savochkin, 2019. Modern Issues in Radioelectronics and Telecommunications “RT-2019”. Sevastopol: SevSU, p. 74 (in Russian).
  43. Shishkin, I.E., Grekov, A.N. and Nikishin, V.V., 2019. Intelligent Decision Support System for Detection of Anomalies and Unmanned Surface Vehicle Inertial Navigation Correction. In: IEEE, 2019. 2019 International Russian Automation Conference (RusAutoCon). Sochi: Institute of Electrical and Electronics Engineers Inc., pp. 1-6. doi:10.1109/RUSAUTOCON.2019.8867601
  44. Rauen, T.V. and Bagaev, A.V., 2021. [Evaluation of the Concentration and Qualitative Composition of Suspended Matter in the Sevastopol Bay Using a Flow Cytometer]. In: Shirshov Institute of Oceanology RAS, 2021. Complex Investigations of the World Ocean. Proceedings of the VI Russian Scientific Conference of Young Scientists, Moscow, April 18– 24, 2021. Moscow: Shirshov Institute of Oceanology RAS, pp. 302-303. doi:10.29006/978-5- 6045110-3-9 (in Russian).
  45. Marie, D., Partensky, F., Jacquet, S. and Vaulot, D., 1997. Enumeration and Cell Cycle Analysis of Natural Populations of Marine Picoplankton by Flow Cytometry Using the Nucleic Acid Stain SYBR Green I. Applied and Environmental Microbiology, 63(1), pp. 186- 193. https://doi.org/10.1128/aem.63.1.186-193.1997
  46. Gasol, J.M. and Del Giorgio, P.A., 2000. Using Flow Cytometry for Counting Natural Planktonic Bacteria and Understanding the Structure of Planktonic Bacterial Communities. Scientia Marina, 64(2), pp. 197-224. https://doi.org/10.3989/scimar.2000.64n2197
  47. Marie, D., Simon, N. and Vaulot, D., 2005. Phytoplankton Cell Counting by Flow Cytometry. In: R. A. Andersen, ed., 2005. Algal Culture Techniques. Amsterdam: Elsevier. Chapter 17, pp. 253-267.
  48. Mikhailova, É.N. and Shapiro, N.B., 2008. Reconstruction of the Space and Time Variability of Thermohaline Fields in the Sevastopol Bay. Physical Oceanography, 18(5), pp. 255-271. https://doi.org/10.1007/s11110-009-9026-x
  49. Belokopytov, V.N., Kubryakov, A.I. and Pryakhina, S.F., 2019. Modelling of Water Pollution Propagation in the Sevastopol Bay. Physical Oceanography, 26(1), pp. 3-12. doi:10.22449/1573-160X-2019-1-3-12
  50. Ovsyany, E.I. and Orekhova, N.A., 2018. Hydrochemical Regime of the River Chernaya (Crimea): Environmental Aspects. Physical Oceanography, 25(1), pp. 77-88. doi:10.22449/1573-160X-2018-1-77-88
  51. Sercu, B., Van De Werfhorst, L.C., Murray, J.L.S. and Holden, P.A., 2011. Terrestrial Sources Homogenize Bacterial Water Quality During Rainfall in Two Urbanized Watersheds in Santa Barbara, CA. Microbial Ecology, 62(3), pp. 574-583. https://doi.org/10.1007/s00248- 011-9874-z
  52. Yeo, S.K., Huggett, M.J., Eiler, A. and Rappé, M.S., 2013. Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance. PLoS ONE, 8(2), e56207. https://doi.org/10.1371/journal.pone.0056207
  53. Bondur, V.G., Ivanov, V.A., Dulov, V.A., Goryachkin, Yu.N., Zamshin, V.V., Kondratiev, S.I., Lee, M.E., Mukhanov, V.S., Sovga, E.E. and Chukharev, A.M., 2018. Structure and Origin of the Underwater Plume near Sevastopol. Fundamentalnaya i Prikladnaya Gidrofizika, 11(4), pp. 42-54. doi:10.7868/S2073667318040068 (in Russian).

Download the article (PDF)